O'REILLY"

Up & Running

A FRAMEWORK FOR BUILDING MODERN PHP APPS

Matt Stauffer

O'REILLY"

Laravel: Up and Running

What sets Laravel apart from other PHP web frameworks? Speed and
simplicity, for starters. This rapid application development framework and
its vast ecosystem of tools let you quickly build new sites and applications
with clean, readable code. With this practical guide, Matt Stauffer—a
leading teacher and developer in the Laravel community—provides the
definitive introduction to one of today's most popular web frameworks.

The book's high-level overview and concrete examples will help
experienced PHP web developers get started with Laravel right away. By
the time you reach the last page, you should feel comfortable writing an
entire application in Laravel from scratch.

Dive into several features of this framework, including:

m Blade, Laravel's powerful, custom templating tool

m Tools for gathering, validating, normalizing, and filtering user-
provided data

m Laravel's Eloquent ORM for working with the application’s
databases

m The llluminate request object, and its role in the application
lifecycle

m PHPUnit and Mockery for testing your PHP code
m Laravel's tools for writing JSSON and RESTful APIs

m Interfaces for file system access, sessions, cookies, caches,
and search

m Tools for implementing queues, jobs, events, and WebSocket
event publishing

m Laravel's specialty packages: Scout, Passport, Cashier, Echo,
Elixir, Valet, and Socialite

Matt Stauffer is a developer and a teacher. He is a partner and technical director
at Tighten Co., blogs at mattstauffer.co, and hosts The Five-Minute Geek Show
and the Laravel Podcast.

“Not only is Matt one of
the most knowledgable
members of the Laravel
community, he is also
a fantastic teacher. I'm
proud to recommend
this book as a thorough,
extensive guide to the
Laravel framework.”

—Taylor Otwell

Creator of Laravel

“As a self-diagnosed
evangelist for Laravel,
I'm thankful to finally
have a book that I can
point newcomers to.
Even better, [can think
of no one more qualified
to introduce this
wonderful framework to

the masses than Matt.”
—Jeffrey Way

Founder of Laracasts

PHP
US $44.99 CAN $51.99
ISBN: 978-1-491-93608-5

781491

936085

Twitter: @oreillymedia
facebook.com/oreilly

Laravel: Up and Running
A Framework for Building Modern PHP Apps

Matt Stauffer

Bejing - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Laravel: Up and Running
by Matt Stauffer

Copyright © 2017 Matt Stauffer. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald Indexer: Angela Howard
Production Editor: Colleen Lobner Interior Designer: David Futato
Copyeditor: Rachel Head Cover Designer: Randy Comer
Proofreader: Kim Cofer lllustrator: Rebecca Demarest
December 2016: First Edition

Revision History for the First Edition

2016-11-14: First Release
2017-02-03: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491936085 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Laravel: Up and Running, the cover
image of a gemsbok, and related trade dress are trademarks of O’'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-93608-5
[LSI]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491936085

This book is dedicated to my gracious and inspiring wife, Tereva, my joyful and coura-
geous son, Malachi, and my beautiful daughter, Mia, who spent the majority of this
book’s creation in her mamas belly.

Why Use a Framework?
“T’ll Just Build It Myself”
Consistency and Flexibility
A Short History of Web and PHP Frameworks
Ruby on Rails
The Influx of PHP Frameworks
The Good and the Bad of Codelgniter
Laravel 1, 2, and 3
Laravel 4
Laravel 5
What’s So Special About Laravel?
The Philosophy of Laravel
How Laravel Achieves Developer Happiness
The Laravel Community
How It Works
Why Laravel?

. Setting Up a Laravel Development Environment. ..

System Requirements

Composer

Local Development Environments
Laravel Valet
Laravel Homestead

Creating a New Laravel Project

Table of Contents

—

O N QN Ul s s s R W W WD NN

11
12
12
12
13
17

Installing Laravel with the Laravel Installer Tool 17

Installing Laravel with Composer’s create-project Feature

Laravel’s Directory Structure
The Folders
The Loose Files
Configuration
Up and Running
Testing
TL;DR

Routing and Controllers...........ccovvviiviiiiiiiienniennnss

Route Definitions
Route Verbs
Route Handling
Route Parameters
Route Names

Route Groups
Middleware
Path Prefixes
Subdomain Routing
Namespace Prefixes
Name Prefixes

Views

Using View Composers to Share Variables with Every View

Controllers
Getting User Input
Injecting Dependencies into Controllers
Resource Controllers
Route Model Binding
Implicit Route Model Binding
Custom Route Model Binding
Route Caching
Form Method Spoofing
An Introduction to HTTP Verbs
HTTP Verbs in Laravel
HTTP Method Spoofing in HTML Forms
CSRF Protection
Redirects
redirect()->to()
redirect()->route()
redirect()->back()
Other Redirect Methods
redirect()->with()

18
18
18
19
20
20
21
22

23
23
25
26
26
28
30
31
32
33
33
34
34
35
36
39
40
41
43
43
44
45
45
45
46
46
46
48
49
49
50
50
50

vi

| Table of Contents

Aborting the Request

Custom Responses
response()->make()
response()->json() and ->jsonp()
response()->download() and ->file()

Testing

TL;DR

. BladeTemplating........oovvriiiiiiiii i i i i e

Echoing Data
Control Structures
Conditionals
Loops
or
Template Inheritance
Defining Sections with @section/@show and @yield
@parent
@include
@each
View Composers and Service Injection
Binding Data to Views Using View Composers
Blade Service Injection
Custom Blade Directives
Parameters in Custom Blade Directives

Example: Using Custom Blade Directives for a Multitenant App

Testing
TL;DR

. Frontend Components.ovvuiiiiiiiiieiiie i e riereieeenaeennes

Elixir
Elixir Folder Structure
Running Elixir
What Does Elixir Provide?
Pagination
Paginating Database Results
Manually Creating Paginators
Message Bags
Named Error Bags
String Helpers, Pluralization, and Localization
The String Helpers and Pluralization
Localization
Testing

52
52
53
53
53
53
54

55
56
57
57
58
60
60
60
62
62
63
64
64
67
68
70
70
71
72

75
75
77
77
78
84
84
85
86
88
88
88
89
92

Table of Contents

vii

Testing with Elixir 92

Testing Message and Error Bags 92
Translation and Localization 92
TL;DR 93
6. Collectingand HandlingUserData............ccovviiiiiiiiiiiiinrennnennnes 95
Injecting a Request Object 95
$request->all() 96
$request->except() and $request->only() 96
$request->has() and $request->exists() 97
$request->input() 97
Array Input 98
JSON Input (and $request->json()) 98
Route Data 100
From Request 100
From Route Parameters 100
Uploaded Files 101
Validation 103
validate() in the Controller Using ValidatesRequests 103
Manual Validation 106
Displaying Validation Error Messages 106
Form Requests 107
Creating a Form Request 107
Using a Form Request 108
Eloquent Model Mass Assignment 109
{{ Versus {!! 110
Testing 110
TL;DR 111
7. ArtisanandTinker...........ooooiiiiiinnnn 113
An Introduction to Artisan 113
Basic Artisan Commands 114
Options 114
The Grouped Commands 115
Writing Custom Artisan Commands 117
Registering Commands 119
A Sample Command 120
Arguments and Options 121
Using Input 123
Prompts 124
Output 125
Calling Artisan Commands in Normal Code 127

vii | Table of Contents

Tinker 128

Testing 128
TL;DR 129
. DatabaseandEloquent............c.covvuiiiiiiiiiiiiiiiiiieiineriierenannns 131
Configuration 131
Database Connections 132
Other Database Configuration Options 133
Migrations 133
Defining Migrations 134
Running Migrations 141
Seeding 141
Creating a Seeder 142
Model Factories 143
Query Builder 146
Basic Usage of the DB Facade 147
Raw SQL 147
Chaining with the Query Builder 149
Transactions 156
Introduction to Eloquent 157
Creating and Defining Eloquent Models 159
Retrieving Data with Eloquent 160
Inserts and Updates with Eloquent 162
Deleting with Eloquent 165
Scopes 168
Customizing Field Interactions with Accessors, Mutators, and Attribute
Casting 171
Eloquent Collections 174
Eloquent Serialization 177
Eloquent Relationships 179
Child Records Updating Parent Record Timestamps 190
Eloquent Events 192
Testing 193
TL;DR 195
. User Authentication and Authorization. ..., 197
The User Model and Migration 198
Using the auth() Global Helper and the Auth Facade 201
The Auth Controllers 201
RegisterController 201
LoginController 203
ResetPasswordController 204

Table of Contents | ix

10.

ForgotPasswordController
Auth::routes()
The Auth Scaffold
“Remember Me”
Manually Authenticating Users
Auth Middleware
Guards
Changing the Default Guard
Using Other Guards Without Changing the Default
Adding a New Guard
Creating a Custom User Provider
Custom User Providers for Nonrelational Databases
Auth Events
Authorization (ACL) and Roles
Defining Authorization Rules
The Gate Facade (and Injecting Gate)
The Authorize Middleware
Controller Authorization
Checking on the User Instance
Blade Checks
Intercepting Checks
Policies
Testing
TL;DR

Requests and Responses.ovvveueenneineeneeneeneeneennnnnns

Laravel’s Request Lifecycle
Bootstrapping the Application
Service Providers
The Request Object
Getting a Request Object in Laravel
Getting Basic Information About a Request
Persistence
The Response Object
Using and Creating Response Objects in Controllers
Specialized Response Types
Laravel and Middleware
An Introduction to Middleware
Creating Custom Middleware
Binding Middleware
Passing Parameters to Middleware
Testing

205
205
206
207
208
208
209
209
210
210
211
211
212
212
213
214
214
215
217
217
218
218
221
223

225
225
226
227
228
229
230
233
233
233
235
238
238
239
241
244
245

X

Table of Contents

1.

12.

TL;DR

The CONtAINeT. c vttt e ettt ettt eeneeneneneenenenns

A Quick Introduction to Dependency Injection
Dependency Injection and Laravel
The app() Global Helper
How the Container Is Wired
Binding Classes to the Container
Binding to a Closure
Binding to Singletons, Aliases, and Instances
Binding a Concrete Instance to an Interface
Contextual Binding
Constructor Injection
Method Injection
Facades and the Container
How Facades Work
Service Providers
Testing
TL;DR

53 11

Testing Basics

Naming Tests

The Testing Environment

The Testing Traits
WithoutMiddleware
DatabaseMigrations
DatabaseTransactions

Application Testing
TestCase
“Visiting” Routes
Custom Application Testing Assertions

JSON and Non-visit() Application Testing Assertions

Clicking and Forms
Jobs and Events
Authentication and Sessions
Artisan and Seed
Mocking
Mockery
Mocking Facades
TL;DR

246

247
247
249
249
250
251
252
253
253
254
254
255
256
257
258
258
259

261
262
264
265
266
266
266
266
266
267
268
270
271
275
276
277
277
278
278
281
282

Table of Contents

| xi

13, WHEING APIS. . ev ettt ittt it i ittt i i s ie e enneanss 283

The Basics of REST-Like JSON APIs 283
Controller Organization and JSON Returns 285
Reading and Sending Headers 288
Sending Response Headers in Laravel 289
Reading Request Headers in Laravel 289
Eloquent Pagination 289
Sorting and Filtering 291
Sorting Your API Results 291
Filtering Your API Results 293
Transforming Results 293
Writing Your Own Transformer 294
Nesting and Relationships 295
API Authentication with Laravel Passport 297
A Brief Introduction to OAuth 2.0 297
Installing Passport 297
Passport’s API 299
Passport’s Available Grant Types 299
Managing Clients and Tokens with the Passport API and the
Vue Components 307
Passport Scopes 309
Laravel 5.2+ API Token Authentication 311
Testing 312
TL;DR 313
14. Storageand Retrieval..........covuiiiniiiiiiiiiiiiiiiiiiiiieeiieeeeaenns 315
Local and Cloud File Managers 315
Configuring File Access 315
Using the Storage Facade 316
Adding Additional Flysystem Providers 318
Basic File Uploads and Manipulation 318
Sessions 320
Accessing the Session 320
The Methods Available on Session Instances 321
Flash Session Storage 323
Cache 323
Accessing the Cache 323
The Methods Available on Cache Instances 324
Cookies 325
Cookies in Laravel 326
Accessing the Cookie Tools 326
Full-Text Search with Laravel Scout 329

xii | Tableof Contents

15.

16.

Installing Scout 329
Marking Your Model for Indexing 329
Searching Your Index 329
Queues and Scout 330
Perform Operations Without Indexing 330
Manually Trigger Indexing via Code 330
Manually Trigger Indexing via the CLI 331
Testing 331
File Storage 331
Session 333
Cache 334
Cookies 334
TL;DR 336
Mail and Notifications.oooiiiiiiiii 337
Mail 337
“Classic” Mail 338
Basic “Mailable” Mail Usage 338
Mail Templates 340
Methods Available in build() 341
Attachments and Inline Images 342
Queues 343
Local Development 344
Notifications 345
Defining the via() Method for Your Notifiables 348
Sending Notifications 349
Queueing Notifications 349
Out-of-the-Box Notification Types 350
Testing 352
Mail 352
Notifications 353
TL;DR 354
Queues, Jobs, Events, Broadcasting, and the Scheduler......................... 355
Queues 355
Why Queues? 356
Basic Queue Configuration 356
Queued Jobs 356
Running a Queue Worker 360
Handling Errors 360
Controlling the Queue 363
Queues Supporting Other Functions 364

Table of Contents | xiii

Events
Firing an Event
Listening for an Event
Broadcasting Events over WebSockets, and Laravel Echo
Configuration and Setup
Broadcasting an Event
Receiving the Message
Advanced Broadcasting Tools
Laravel Echo (the JavaScript Side)
Scheduler
Available Task Types
Available Time Frames
Blocking and Overlap
Handling Task Output
Task Hooks
Testing
TL;DR

17. Helpersand Collections.c.overieerieeiieriiereiieeieeniernnerennnns
Helpers
Arrays
Strings
Application Paths
URLs
Misc
Collections
The Basics of Collections
A Few Methods
TL;DR

364
364
366
369
370
370
373
374
378
382
383
383
385
385
386
386
388

389
389
389
391
393
394
395
398
399
400
405

xiv | Table of Contents

Preface

The story of how I got started with Laravel is a common one: I had written PHP for
years, but I was on my way out the door, pursuing the power of Rails and other
modern web frameworks. Rails in particular had a lively community, a perfect combi-
nation of opinionated defaults and flexibility, and the power of Ruby Gems to lever-
age prepackaged common code.

Something kept me from jumping ship, and I was glad for that when I found Laravel.
It offered everything I was drawn to in Rails, but it wasn’t just a Rails clone; this was
an innovative framework with incredible documentation, a welcoming community,
and clear influences from many languages and frameworks.

Since that day I've been able to share my journey of learning Laravel through blog-
ging and speaking at conferences; I've written dozens of apps in Laravel for side and
work projects, and I've met thousands of Laravel developers online and in person. I
have plenty of tools in my toolkit at our consultancy, but I am honestly happiest when
I sit down in front of a command line and type laravel new project.

What This Book Is About

This is not the first book about Laravel, and it won't be the last. I don't intend for this
to be a book that covers every line of code or every implementation pattern. I don’t
want this to be the sort of book that goes out of date when a new version of Laravel is
released. Instead, its primary purpose is to provide developers with a high-level over-
view and concrete examples to learn what they need to get started, as quickly as possi-
ble. Rather than mirroring the docs, I want to help you understand the foundational
concepts behind Laravel.

Laravel is a powerful and flexible PHP framework. It has a thriving community and a
wide ecosystem of tools, and as a result it's growing in appeal and reach. This book is
for developers who already know how to make websites and applications and want to
quickly learn how to do so in Laravel.

XV

Laravel's documentation is thorough and excellent. If you find that I don’t cover any
particular topic deeply enough for your liking, I encourage you to visit the online
documentation and dig deeper into that particular topic.

I think you will find the book a comfortable balance between high-level introduction
and concrete application, and by the end you should feel comfortable writing an
entire application in Laravel, from scratch. And, if I did my job well, you'll be excited
to try.

Who This Book Is For

This book assumes knowledge of basic object-oriented programming practices, PHP
(or at least the general syntax of C-family languages), and the basic concepts of the
Model-View-Controller (MVC) pattern and templating. If you've never made a
website before, you may find yourself in over your head. But as long as you have
some programming experience, you dont have to know anything about Laravel
before you read this book—we’ll cover everything you need to know, from the sim-
plest “Hello, world!”

Laravel can run on any operating system, but there will be some Bash (shell) com-
mands in the book that are easiest to run on Linux/Mac OS. Windows users may have
a harder time with these commands and with modern PHP development, but if you
follow the instructions to get Homestead (a Linux virtual machine) running, you'll be
able to run all of the commands from there.

How This Book Is Structured

This book is structured in what I imagine to be a chronological order: if you're build-
ing your first web app with Laravel, the early chapters cover the foundational compo-
nents you'll need to get started, and the later chapters cover less foundational or more
esoteric features.

Each section of the book can be read on its own, but for someone new to the frame-
work, I've tried to structure the chapters so that it’s actually very reasonable to start
from the beginning and read until the end.

Where applicable, each chapter will end with two sections: “Testing” and “TL;DR” If
youre not familiar, TL;DR means “too long; didn’t read” These final sections will
show you how to write tests for the features covered in each chapter and give a high-
level overview of what was covered.

The book is written for Laravel 5.3, but because Laravel 5.1 is the latest LTS release,
any features that are new in 5.2 or 5.3 will be identified.

xvi | Preface

http://laravel.com/docs
http://laravel.com/docs

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\
0'Reilly Safari

Safari (formerly Safari Books Online) is membership-based
4 - training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly

Preface | xvii

http://oreilly.com/safari

Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/laravel-up-and-running.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have happened without the gracious support of my amazing
wife Tereva or the understanding (“Daddy’s writing, buddy!”) of my son Malachi.
And while she wasn’t explicitly aware of it, my daughter Mia was around for almost
the entire creation of the book, so this book is dedicated to the whole family. There
were many, many long evening hours and weekend Starbucks trips that took me away
from my family, and I couldn’t be more grateful for their support and also their pres-
ence just making my life awesome.

Additionally, the entire Tighten Co. family has supported and encouraged me
through the writing of the book, several even editing (Keith Damiani, editor extraor-

xviii | Preface

http://oreilly.com/safari
http://bit.ly/laravel-up-and-running
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

dinaire) and helping me with challenging code samples (Adam Wathan, King of the
Collection Pipeline). Dan Sheetz, my partner in Tighten crime, has been gracious
enough to watch me while away many a work hour cranking on this book and was
nothing but supportive and encouraging; and Dave Hicking, our operations manager,
helped me arrange my schedule and work responsibilities around writing time.

Taylor Otwell deserves thanks and honor for creating Laravel—and therefore creating
so many jobs and helping so many developers love our lives that much more. He
deserves appreciation for how he’s focused on developer happiness and how hard he’s
worked to have empathy for developers and to build a positive and encouraging com-
munity. But I also want to thank him for being a kind, encouraging, and challenging
friend. Taylor, you're a boss.

Thanks to Jeffrey Way, who I still contend to be one of the best teachers on the Inter-
net. He originally introduced me to Laravel and still introduces more people every
day. He's also, unsurprisingly, a fantastic human being whom I'm glad to call a friend.

Thank you to Jess DAmico, Shawn McCool, Ian Landsman, and Taylor for seeing
value in me as a conference speaker early on and giving me a platform to teach from.
Thanks to Dayle Rees for making it so easy for so many to learn Laravel in the early
days.

Thanks to every person who put their time and effort into writing blog posts about
Laravel, especially early on: Eric Barnes, Chris Fidao, Matt Machuga, Jason Lewis,
Ryan Tablada, Dries Vints, Maks Surguy, and so many more.

And thanks to the entire community of friends on Twitter, IRC, and Slack whove
interacted with me over the years. I wish I could name every name, but I would miss
some and then feel awful about missing them. You all are brilliant, and I'm honored
to get to interact with you on a regular basis.

Thanks to my O’Reilly editor, Ally MacDonald, and all of my technical editors: Keith
Damiani, Michael Dyrynda, Adam Fairholm, and Myles Hyson.

And, of course, thanks to the rest of my family and friends, who supported me
directly or indirectly through this process—my parents and siblings, the Gainesville
community, other business owners and authors, other conference speakers, and the
inimitable DCB. I need to stop writing because by the time I run out of space here I'll
be thanking my Starbucks baristas.

Preface | xix

CHAPTER 1
Why Laravel?

In the early days of the dynamic web, writing a web application looked a lot different
than it does today. Developers then were responsible for writing the code for not just
the unique business logic of our applications, but also each of the components that
are so common across sites—user authentication, input validation, database access,
templating, and more.

Today, programmers have dozens of application development frameworks and thou-
sands of components and libraries easily accessible. It's a common refrain among pro-
grammers that, by the time you learn one framework, three newer (and purportedly
better) frameworks have popped up intending to replace it.

“Tust because it’s there” might be a valid justification for climbing a mountain, but
there are better reasons to choose to use a specific framework—or to use a framework
at all. It's worth asking the question: why frameworks? More specifically, why Laravel?

Why Use a Framework?

It’s easy to see why it’s beneficial to use the individual components, or packages, that
are available to PHP developers. With packages, someone else is responsible for
developing and maintaining an isolated piece of code that has a well-defined job, and
in theory that person has a deeper understanding of this single component than you
have time to have.

Frameworks like Laravel —and Symfony, Silex, Lumen, and Slim—prepackage a col-
lection of third-party components together with custom framework “glue” like con-
figuration files, service providers, prescribed directory structures, and application
bootstraps. So, the benefit of using a framework in general is that someone has made
decisions not just about individual components for you, but also about how those
components should fit together.

“V'll Just Build It Myself”

Let’s say you start a new web app without the benefit of a framework. Where do you
begin? Well, it should probably route HTTP requests, so you now need to evaluate all
of the HTTP request and response libraries available and pick one. Then a router. Oh,
and you’ll probably need to set up some form of routes configuration file. What syn-
tax should it use? Where should it go? What about controllers? Where do they live,
and how are they loaded? Well, you probably need a dependency injection container
to resolve the controllers and their dependencies. But which one?

Furthermore, what if you do take the time to answer all those questions and success-
fully create your application—what’s the impact on the next developer? What about
when you have four such custom-framework-based applications, or a dozen, and you
have to remember where the controllers live in each, or what the routing syntax is?

Consistency and Flexibility

Frameworks address this issue by providing a carefully considered answer to the
question “Which component should we use here?” and ensuring that the particular
components chosen work well together. Additionally, frameworks provide conven-
tions that reduce the amount of code a developer new to the project has to under-
stand—if you understand how routing works in one Laravel project, for example, you
understand how it works in all Laravel projects.

When someone prescribes rolling your own framework for each new project, what
they’re really advocating is the ability to control what does and doesn't go into your
applications foundation. That means the best frameworks will not only provide you
with a solid foundation, but also give you the freedom to customize to your heart’s
content. And this, as I'll show you in the rest of this book, is part of what makes Lara-
vel so special.

A Short History of Web and PHP Frameworks

An important part of being able to answer the question “Why Laravel?” is under-
standing Laravel’s history—and understanding what came before it. Prior to Laravel’s
rise in popularity, there were a variety of frameworks and other movements in PHP
and other web development spaces.

Ruby on Rails

David Heinemeier Hansson released the first version of Ruby on Rails in 2004, and
it’s been hard to find a web application framework since then that hasn’t been influ-
enced by Rails in some way.

2 | Chapter 1: Why Laravel?

Rails popularized MVC, RESTful JSON APIs, convention over configuration, Active-
Record, and many more tools and conventions that had a profound influence on the
way web developers approached their applications—especially with regard to rapid
application development.

The Influx of PHP Frameworks

It was clear to most developers that Rails, and similar web application frameworks,
were the wave of the future, and PHP frameworks, including those admittedly imitat-
ing Rails, started popping up quickly.

CakePHP was the first in 2005, and it was soon followed by Symfony, Codelgniter,
Zend Framework, and Kohana (a Codelgniter fork). Yii arrived in 2008, and Aura
and Slim in 2010. 2011 brought FuelPHP and Laravel, both of which were not quite
Codelgniter offshoots, but instead proposed as alternatives.

Some of these frameworks were more Rails-y, focusing on database object-relational
mappers (ORMs), MVC structures, and other tools targeting rapid development.
Others, like Symfony and Zend, focused more on enterprise design patterns and
ecommerce.

The Good and the Bad of Codelgniter

CakePHP and Codelgniter were the two early PHP frameworks that were most
open about how much their inspiration was drawn from Rails. Codelgniter quickly
rose to fame and by 2010 was arguably the most popular of the independent PHP
frameworks.

Codelgniter was simple, easy to use, and boasted amazing documentation and a
strong community. But its use of modern technology and patterns advanced slowly,
and as the framework world grew and PHP’s tooling advanced, Codelgniter started
falling behind in terms of both technological advances and out-of-the-box features.
Unlike many other frameworks, Codelgniter was managed by a company, and they
were slow to catch up with PHP 5.3’s newer features like namespaces and the moves
to GitHub and later Composer. It was in 2010 that Taylor Otwell, Laravel’s creator,
became dissatisfied enough with Codelgniter that he set off to write his own frame-
work.

Laravel 1,2, and 3

The first beta of Laravel 1 was released in June 2011, and it was written completely
from scratch. It featured a custom ORM (Eloquent); closure-based routing (inspired
by Ruby Sinatra); a module system for extension; and helpers for forms, validation,
authentication, and more.

A Short History of Web and PHP Frameworks | 3

Early Laravel development moved quickly, and Laravel 2 and 3 were released in
November 2011 and February 2012, respectively. They introduced controllers, unit
testing, a command-line tool, an inversion of control (IoC) container, Eloquent rela-
tionships, and migrations.

Laravel 4

With Laravel 4, Taylor rewrote the entire framework from the ground up. By this
point Composer, PHP’s now-ubiquitous package manager, was showing signs of
becoming an industry standard and Taylor saw the value of rewriting the framework
as a collection of components, distributed and bundled together by Composer.

Taylor developed a set of components under the code name Illuminate and, in May
2013, released Laravel 4 with an entirely new structure. Instead of bundling the
majority of its code as a download, Laravel now pulled in the majority of its compo-
nents from Symfony (another framework that released its components for use by oth-
ers) and the Illuminate components through Composer.

Laravel 4 also introduced queues, a mail component, facades, and database seeding.
And because Laravel was now relying on Symfony components, it was announced
that Laravel would be mirroring (not exactly, but soon after) the six-monthly release
schedule Symfony follows.

Laravel 5

Laravel 4.3 was scheduled to release in November 2014, but as development pro-
gressed, it became clear that the significance of its changes merited a major release,
and Laravel 5 was released in February 2015.

Laravel 5 featured a revamped directory structure, removal of the form and HTML
helpers, the introduction of the contract interfaces, a spate of new views, Socialite for
social media authentication, Elixir for asset compilation, Scheduler to simplify cron,
dotenv for simplified environment management, form requests, and a brand new
REPL (read-evaluate-print loop).

What's So Special About Laravel?

So what is it that sets Laravel apart? Why is it worth having more than one PHP
framework at any time? They all use components from Symfony anyway, right? Let’s
talk a bit about what makes Laravel “tick””

The Philosophy of Laravel

You only need to read through the Laravel marketing materials and READMEs to
start seeing its values. Taylor uses light-related words like “Illuminate” and “Spark”

4 | Chapter 1:Why Laravel?

» o«

And then there are these: “Artisans” “Elegant” Also, these: “Breath of fresh air”
“Fresh start” And finally: “Rapid” “Warp speed”

The two most strongly communicated values of the framework are to increase devel-
oper speed and developer happiness. Taylor has described the “Artisan” language as
intentionally contrasting against more utilitarian values. You can see the genesis of
this sort of thinking in his 2011 question on StackExchange in which he stated,
“Sometimes I spend ridiculous amounts of time (hours) agonizing over making code
look pretty”—just for the sake of a better experience of looking at the code itself. And
he’s often talked about the value of making it easier and quicker for developers to take
their ideas to fruition, getting rid of unnecessary barriers to creating great products.

Laravel is, at its core, about equipping and enabling developers. Its goal is to provide
clear, simple, and beautiful code and features that help developers quickly learn, start,
and develop, and write code that’s simple, clear, and will last.

The concept of targeting developers is clear across Laravel materials. “Happy devel-
opers make the best code” is written in the documentation. “Developer happiness
from download to deploy” was the unofficial slogan for a while. Of course, any tool or
framework will say it wants developers to be happy. But having developer happiness
as a primary concern, rather than secondary, has had a huge impact on Laravel’s style
and decision-making progress. Where other frameworks may target architectural
purity as their primary goal, or compatibility with the goals and values of enterprise
development teams, Laravel’s primary focus is on serving the individual developer.

How Laravel Achieves Developer Happiness

Just saying you want to make developers happy is one thing. Doing it is another, and
it requires you to question what in a framework is most likely to make developers
unhappy and what is most likely to make them happy. There are a few ways Laravel
tries to make developers’ lives easier.

First, Laravel is a rapid application development framework. That means it focuses on
a shallow (easy) learning curve and on minimizing the steps between starting a new
app and publishing it. All of the most common tasks in building web applications,
from database interactions to authentication to queues to email to caching, are made
simpler by the components Laravel provides. But Laravel’s components aren’t just
great on their own; they provide a consistent API and predictable structures across
the entire framework. That means that, when you're trying something new in Laravel,
youre more than likely going to end up saying, “... and it just works.

This doesn't end at the framework itself, either. Laravel provides an entire ecosystem
of tools for building and launching applications. You have Homestead and Valet for
local development, Forge for server management, and Envoyer for advanced deploy-
ment. And there’s a suite of add-on packages: Cashier for payments and subscrip-

What's So Special About Laravel? | 5

http://bit.ly/2dT5kmS

tions, Echo for WebSockets, Scout for search, Passport for API authentication,
Socialite for social login, and Spark to bootstrap your SaaS. Laravel is trying to take
the repetitive work out of developers’ jobs so they can do something unique.

Next, Laravel focuses on “convention over configuration”—meaning that if youre
willing to use Laravel’s defaults, you’ll have to do much less work than with other
frameworks that require you to declare all of your settings even if youre using the
recommended configuration. Projects built on Laravel take less time than those built
on most other PHP frameworks.

Laravel also focuses deeply on simplicity. It’s possible to use dependency injection and
mocking and the Data Mapper pattern and repositories and Command Query
Responsibility Segregation and all sorts of other more complex architectural patterns
with Laravel, if you want. But while other frameworks might suggest using those tools
and structures on every project, Laravel and its documentation and community lean
toward starting with the simplest possible implementation—a global function here, a
facade there, ActiveRecord over there. This allows developers to create the simplest
possible application to solve for their needs.

An interesting source of how Laravel is different is that its creator and its community
are more connected to and inspired by Ruby and Rails and functional programming
languages than by Java. There’s a strong current in modern PHP to lean toward ver-
bosity and complexity, embracing the more Java-esque aspects of PHP. But Laravel
tends to be on the other side, embracing expressive, dynamic, and simple coding
practices and language features.

The Laravel Community

If this book is your first exposure to the Laravel community, you have something spe-
cial to look forward to. One of the distinguishing elements of Laravel, which has con-
tributed to its growth and success, is the welcoming, teaching community that
surrounds it. From Jeffrey Way’s Laracasts video tutorials to Laravel News to Slack
and IRC channels, from Twitter friends to bloggers to the Laracon conferences, Lara-
vel has a rich and vibrant community full of folks who've been around since day one
and folks who are on their own day one. And this isn't an accident:

From the very beginning of Laravel, I've had this idea that all people want to feel like
they are part of something. Its a natural human instinct to want to belong and be
accepted into a group of other like-minded people. So, by injecting personality into a
web framework and being really active with the community, that type of feeling can
grow in the community.

—Taylor Otwell, Product and Support interview

6 | Chapter1: Why Laravel?

https://laracasts.com/
https://laravel-news.com/

Taylor understood from the early days of Laravel that a successful open source project
needed two things: good documentation and a welcoming community. And those
two things are now hallmarks of Laravel.

How It Works

Up until now, everything I've shared here has been entirely abstract. What about the
code, you ask? Let’s dig into a simple application (Example 1-1) so you can see what
working with Laravel day-to-day is actually like.

Example 1-1. “Hello, World” in routes/web.php

// File: routes/web.php
<?php

Route::get('/"', function() {
return 'Hello, World!';
s

The simplest possible action you can take in a Laravel application is to define a route
and return a result any time someone visits that route. If you initialize a brand new
Laravel application on your machine, define the route in Example 1-1, and then serve
the site from the public directory, you'll have a fully functioning “Hello, World” exam-
ple (see Figure 1-1).

Hello, World!

Figure 1-1. Returning “Hello, World!” with Laravel

It looks very similar to do the same with controllers, as you can see in Example 1-2.

Example 1-2. “Hello, World” with controllers

// File: routes/web.php
<?php

Route::get('/', 'WelcomeController@index');

// File: app/Http/Controllers/WelcomeController.php
<?php
namespace app\Http\Controllers;

How ItWorks | 7

class WelcomeController

{
public function index()
{
return 'Hello, World!';
}
}

And if were storing our greetings in the database, it'll also look pretty similar (see
Example 1-3).

Example 1-3. Multigreeting “Hello, World” with database access

// File: routes/web.php
<?php

Route::get('/', function() {
return Greeting::first()->body;

s

// File: app/Greeting.php
<?php

use Illuminate\Database\Eloquent\Model;

class Greeting extends Model {}

// File: database/migrations/2015_07_19 010000 _create_greetings_table.php
<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;

class CreateGreetingsTable extends Migration

{
public function up()
{

Schema: :create('greetings', function (Blueprint $table) {
$table->increments('id');
Stable->string('body');
$table->timestamps();

b

}
public function down()
{
Schema: :drop('greetings');
}
}

8 | Chapter 1: Why Laravel?

Example 1-3 might be a bit overwhelming, and if so, just skip over it. We'll learn
about everything that’s happening here in later chapters, but you can already see that
with just a few lines of code, we've set up database migrations and models and pulled
records out. It’s just that simple.

Why Laravel?

So—why Laravel?

Because Laravel helps you bring your ideas to reality with no wasted code, using
modern coding standards, surrounded by a vibrant community, with an empowering
ecosystem of tools.

And because you, dear developer, deserve to be happy.

Why Laravel? | 9

CHAPTER 2

Setting Up a Laravel Development
Environment

Part of PHP’s success has been because it’s hard to find a web server that can’t serve
PHP. However, modern PHP tools have stricter requirements than those of the past.
The best way to develop for Laravel is to ensure a consistent local and remote server
environment for your code, and thankfully, the Laravel ecosystem has a few tools
for this.

System Requirements

Everything we'll cover in this chapter is possible with Windows machines, but you'll
need dozens of pages of custom instructions and caveats. I'll leave those instructions
and caveats to actual Windows users, so the examples here and in the rest of the book
will focus on Unix/Linux/Mac OS developers.

Whether you choose to serve your website by installing PHP and other tools on your
local machine, serve your development environment from a virtual machine via
Vagrant, or rely on a tool like MAMP/WAMP/XAMPP, your development environ-
ment will need to have all of the following installed in order to serve Laravel sites:

o PHP >=5.6.4 for Laravel 5.3 or PHP >=5.5.9 for 5.1 and 5.2
o OpenSSL PHP extension

« PDO PHP extension

o Mbstring PHP extension

o Tokenizer PHP extension

n

Composer

Whatever machine youre developing on will need to have Composer installed glob-
ally. If youre not familiar with Composer, its a tool that’s at the foundation of most
modern PHP development. Composer is a dependency manager for PHP, much like
NPM for Node or RubyGems for Ruby. You'll need Composer to install Laravel,
update Laravel, and bring in external dependencies.

Local Development Environments

For many projects, hosting your development environment using a simpler tool set
will be enough. If you already have MAMP or WAMP or XAMPP installed on your
system, that will likely be fine to run Laravel. You can also just run Laravel with PHP’s
built-in web server, assuming your system PHP is the right version.

All you really need to get started is the ability to run PHP. Everything past that is up
to you.

However, Laravel offers two tools for local development, Valet and Homestead, and
we'll cover both briefly. If you're unsure of which to use, I'd recommend using Valet
and just skimming the Homestead section; however, both tools are valuable and
worth understanding.

Laravel Valet

If you want to use PHP’s built-in web server, your simplest option is to serve every
site from a localhost URL. If you run php -S localhost:8000 -t public from your
Laravel site’s root folder, PHP’s built-in web server will serve your site at http://local-
host:8000/. You can also run php artisan serve once you have your application set
up to easily spin up an equivalent server.

But if you're interested in tying each of your sites to a specific development domain,
you’ll need to get comfortable with your operating system’s hosts file and use a tool
like dnsmasq. Let’s instead try something simpler.

If you're a Mac user (there are also unofficial forks for Windows and Linux), Laravel
Valet takes away the need to connect your domains to your application folders. Valet
installs dnsmasq and a series of PHP scripts that make it possible to type laravel
new myapp && open myapp.dev and for it to just work. Youll need to install a few
tools using Homebrew, which the documentation will walk you through, but the steps
from initial installation to serving your apps are few and simple.

Install Valet (see the docs for the latest installation instruction—it’s under very active
development at this time of writing), and point it at one or more directories where
your sites will live. I ran valet park from my ~/Sites directory, which is where I put

12 | Chapter2: Setting Up a Laravel Development Environment

https://getcomposer.org/
http://bit.ly/2eNPJ5T
https://laravel.com/docs/valet
https://laravel.com/docs/valet
https://laravel.com/docs/valet

all of my under-development apps. Now, you can just add .dev to the end of the direc-
tory name and visit it in your browser.

Valet makes it easy to serve all folders in a given folder as “FOLDERNAME.dev”
using valet park, to serve just a single folder using valet link, to open the Valet-
served domain for a folder using valet open, to serve the Valet site with HTTPS
using valet secure, and to open an ngrok tunnel so you can share your site with
others with valet share.

Laravel Homestead

Homestead is another tool you might want to use to set up your local development
environment. It’s a configuration tool that sits on top of Vagrant and provides a pre-
configured virtual machine image that is perfectly set up for Laravel development,
and mirrors the most common production environment that many Laravel sites
run on.

Setting up Homestead

If you choose to use Homestead, it’s going to take a bit more work to set up than
something like MAMP or Valet. The benefits are myriad, however: configured cor-
rectly, your local environment can be incredibly close to your remote working envi-
ronment; you won't have to worry about updating your dependencies on your local
machine; and you can learn all about the structure of Ubuntu servers from the safety
of your local machine.

What Tools Do Homestead Offer?

You can always upgrade the individual components of your Homestead virtual
machine, but here are a few important tools Homestead comes with by default:

« To run the server and serve the site, Ubuntu, PHP, and Nginx (a web server simi-
lar to Apache).

« For database/storage and queues, MySQL, Postgres, Redis, Memcached, and
beanstalkd.

« For build steps and other tools, Node.

Installing Homestead'’s dependencies

First, you'll need to download and install either VirtualBox or VMWare. VirtualBox
is most common because it’s free.

Next, download and install Vagrant.

Local Development Environments | 13

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Vagrant is convenient because it makes it easy for you to create a new local virtual
machine from a precreated “box,” which is essentially a template for a virtual
machine. So, the next step is to run vagrant box add laravel/homestead from your
terminal to download the box.

Installing Homestead

Next, let’s actually install Homestead. You can install multiple instances of Homestead
(perhaps hosting a different Homestead box per project), but I prefer a single Home-
stead virtual machine for all of my projects. If you want one per project, youw'll want
to install Homestead in your project directory; check the Homestead documentation
online for instructions. If you want a single virtual machine for all of your projects,
install Homestead in your user’s home directory using the following command:

git clone https://github.com/laravel/homestead.git ~/Homestead
Now, run the initialization script from wherever you put the Homestead directory:
bash ~/Homestead/init.sh

This will place Homestead’s primary configuration file, Homestead.yaml, in a new
~/.homestead directory.

Configuring Homestead

Open up Homestead.yaml and configure it how youd like. Here’s what it looks like out
of the box:

ip: "192.168.10.10"
memory: 2048

cpus: 1

provider: virtualbox

authorize: ~/.ssh/id_rsa.pub

keys:
- ~/.ssh/id_rsa

folders:
- map: ~/Code
to: /[home/vagrant/Code

sites:
- map: homestead.app
to: /home/vagrant/Code/Laravel/public

databases:
- homestead

blackfire:
- id: foo

14 | Chapter2: Setting Up a Laravel Development Environment

https://laravel.com/docs/5.3/homestead
https://laravel.com/docs/5.3/homestead

token: bar

client-id: foo

client-token: bar
ports:

- send: 50000

to: 5000

- send: 7777

to: 777

protocol: udp

You'll need to tell it your provider (likely virtualbox), point it to your public SSH
key (by default ~/.ssh/id_rsa.pub; if you don’t have one, GitHub has a great tutorial
on creating SSH keys), map folders and sites to their local machine equivalents, and
provision a database.

Mapping folders in Homestead allows you to edit files on your local machine and
have those files show up in your Vagrant box so they can be served. For example, if
you have a ~/Sites directory where you put all of your code, youd map the folders in
Homestead by replacing the folders section in Homestead.yaml with the following:

folders:
- map: ~/Sites
to: /home/vagrant/Sites

You've now just created a directory in your Homestead virtual machine at /home/
vagrant/Sites that will mirror your computer’s directory at ~/Sites.

Top-level domains for development sites

You can choose any convention for local development sites’ URLSs,
but .app and .dev are the most common. Homestead suggests .app,
so if I'm working on a local copy of symposiumapp.com, I'll develop
at symposiumapp.app.

Technically, .app and .dev are valid TLDs, so by choosing them for
your own internal use, you could be conflicting with real domains.
This doesn’t really bother me, but if youre concerned, there are
four TLDs reserved for development purposes: .exam-
ple, .test, .invalid, and .localhost.

Now, let’s set up our first example website. Let’s say our live site is going to be project-
Name.com. In Homestead.yaml, we'll map our local development folder to project-
Name.app, so we have a separate URL to visit for local development:

sites:
- map: projectName.app
to: /home/vagrant/Sites/projectName/public

Local Development Environments | 15

http://bit.ly/2e7Auof

As you can see, were mapping the URL projectName.app to the virtual machine
directory /home/vagrant/Sites/projectName/public, which is the public folder within
our Laravel install. We'll learn more about that later.

Finally, youre going to need to teach your local machine that, when you try to visit
projectName.app, it should look at your computer’s local IP address to resolve it.
Mac and Linux users should edit /etc/hosts, and Windows users C:\Windows\Sys-
tem32\drivers\etc\hosts. Add a line to this file that looks like this:

192.168.10.10 projectName.app

Once you've provisioned Homestead, your site will be available to browse (on your
machine) at http://projectName.app/.

Creating databases in Homestead

Just like you can define a site in Homestead.yaml, you can also define a database.
Databases are a lot simpler, because youre only telling the provisioner to create a
database with that name, nothing else. We do this as follows:

databases:
- projectname

Provisioning Homestead

The first time you actually turn on a Homestead box, you need to tell Vagrant to initi-
alize it. Navigate to your Homestead directory and run vagrant up:

cd ~/Homestead
vagrant up

Your Homestead box is now up and running; it’s mirroring a local folder, and
it’s serving it to a URL you can visit in any browser on your computer. It also has cre-
ated a MySQL database. Now that you have that environment running, you're ready
to set up your first Laravel project—but first, a quick note about using Homestead
day-to-day.

Using Homestead day-to-day

It's common to leave your Homestead virtual machine up and running at all times,
but if you don't, or if you have recently restarted your computer, you'll need to know
how to spin the box up and down.

Since Homestead is based on Vagrant commands, you'll just use basic Vagrant com-
mands for most Homestead actions. Change to the directory where you installed
Homestead (using cd) and then run the following commands as needed:

16 | Chapter2: Setting Up a Laravel Development Environment

http://projectName.app/

o vagrant up spins up the Homestead box.

o vagrant suspend takes a snapshot of where the box is and then shuts it down;
like “hibernating” a desktop machine.

o vagrant halt shuts the entire box down; like turning off a desktop machine.
 vagrant destroy deletes the entire box; like formatting a desktop machine.

« vagrant provision re-runs the provisioners on the preexisting box.

Connecting to Homestead databases from desktop applications
If you use a desktop application like Sequel Pro, you'll likely want to connect to your
Homestead MySQL databases from your host machine. These settings will get
you going:

« Connection type: Standard (non-SSH)

o Host: 127.0.0.1

« Username: homestead

o Password: secret

 Port: 33060

Creating a New Laravel Project

There are two ways to create a new Laravel project, but both are run from the com-
mand line. The first option is to globally install the Laravel installer tool (using Com-
poser); the second is to use Composer’s create-project feature.

You can learn about both options in more detail on the Installation documentation
page, but I'd recommend the Laravel installer tool.

Installing Laravel with the Laravel Installer Tool

If you have Composer installed globally, installing the Laravel installer tool is as sim-
ple as running the following command:

composer global require "laravel/installer=~1.1"

Once you have the Laravel installer tool installed, spinning up a new Laravel project
is simple. Just run this command from your command line:

laravel new projectName

This will create a new subdirectory of your current directory named projectName and
install a bare Laravel project in it.

Creating a New Laravel Project | 17

http://laravel.com/docs/installation
http://laravel.com/docs/installation

Installing Laravel with Composer’s create-project Feature

Composer also offers a feature called create-project for creating new projects with
a particular skeleton. To use this tool to create a new Laravel project, issue the follow-
ing command:

composer create-project laravel/laravel projectName --prefer-dist

Just like the installer tool, this will create a subdirectory of your current directory
named projectName that contains a skeleton Laravel install, ready for you to develop.

Laravel’s Directory Structure

When you open up a directory that contains a skeleton Laravel application, you’ll see
the following files and directories:

app/
bootstrap/
config/
database/
public/
resources/
routes/
storage/
tests/
vendor/

.env
.env.example
.gitattributes
.gitignore
artisan
composer. json
composer. lock
gulpfile.js
package. json
phpunit.xml
readme.md
server.php

Let’s walk through them one by one to get familiar.

The Folders

The root directory contains the following folders by default:

o app is where the bulk of your actual application will go. Models, controllers, route
definitions, commands, and your PHP domain code all go in here.

o bootstrap contains the files that the Laravel framework uses to boot every time
it runs.

18 | Chapter2: Setting Up a Laravel Development Environment

o config is where all the configuration files live.
o database is where database migrations and seeds live.

o public is the directory the server points to when it’s serving the website. This con-
tains index.php, which is the front controller that kicks off the bootstrapping pro-
cess and routes all requests appropriately. It's also where any public-facing files
like images, stylesheets, scripts, or downloads go.

o resources is where non-PHP files that are needed for other scripts live. Views, lan-
guage files, and (optionally) Sass/LESS and source JavaScript files live here.

o routes is where all of the route definitions live, both for HTTP routes and “con-
sole routes,” or Artisan commands.

o storage is where caches, logs, and compiled system files live.
o tests is where unit and integration tests live.

o vendor is where Composer installs its dependencies. It's Git-ignored (marked to
be excluded from your version control system), as Composer is expected to run
as a part of your deploy process on any remote servers.

The Loose Files

The root directory also contains the following files:

o .env and .env.example are the files that dictate the environment variables (vari-
ables that are expected to be different in each environment and are therefore not
committed to version control). .env.example is a template that each environment
should duplicate to create its own .env file, which is Git-ignored.

o artisan is the file that allows you to run Artisan commands (see Chapter 7) from
the command line.

o .gitignore and .gitattributes are Git configuration files.

o composer.json and composer.lock are the configuration files for Composer; com-
poser.json is user-editable and composer.lock is not. These files share some basic
information about this project and also define its PHP dependencies.

o gulpfile.js is the (optional) configuration file for Elixir and Gulp. This is for
compiling and processing your frontend assets.

o package.json is like composer.json but for frontend assets.

o phpunit.xml is a configuration file for PHPUnit, the tool Laravel uses for testing
out of the box.

o readme.md is a Markdown file giving a basic introduction to Laravel.

Laravel's Directory Structure | 19

o server.php is a backup server that tries to allow less-capable servers to still pre-
view the Laravel application.

Configuration

The core settings of your Laravel application—database connection, queue and mail
settings, etc.—live in files in the config folder. Each of these files returns an array, and
each value in the array will be accessible by a config key that is comprised of the file-
name and all descendant keys, separated by dots (.)

So, if you create a file at config/services.php that looks like this:

// config/services.php
return [
'sparkpost' => [
'secret' => 'abcdefg'
]
1;
you will now have access to that config variable using config('services.spark
post.secret').

Any configuration variables that should be distinct for each environment (and there-
fore not committed to source control) will instead live in your .env files. Let’s say you
want to use a different Bugsnag API key for each environment. Youd set the config
file to pull it from .env:

// config/services.php
return [
'bugsnag' => [
'api_key' => env('BUGSNAG_API_KEY')
]
I;
This env() helper function pulls a value from your .env file with that same key. So
now, add that key to your .env (settings for this environment) and .env.example (tem-
plate for all environments) files:

BUGSNAG_API_KEY=0infp9813410942

Your .env file already contains quite a few environment-specific variables needed by
the framework, like which mail driver you'll be using and what your basic database
settings are.

Up and Running

Youre now up and running with a bare Laravel install. Run git init, commit the
bare files with git add . and git commit, and you're ready to start coding. That’s it!

20 | Chapter2: Setting Up a Laravel Development Environment

And if youre using Valet, you can run the following commands and instantly see
your site live in your browser:

laravel new myProject && cd myProject && valet open
Every time I start a new project, these are the steps I take:

laravel new myProject

cd myProject

git init

git add .

git commit -m "Initial commit"
I keep all of my sites in a ~/Sites folder, which I have set up as my primary Valet direc-
tory, so in this case I'd instantly have myProject.dev accessible in my browser with no
added work. I can edit .env and point it to a particular database, add that database in
my MySQL app, and I'm ready to start coding.

Lambo

I perform this set of steps so often that I created a simple global
Composer package to do it for me. It’s called Lambo, and you can
learn more about it on GitHub.

Testing

In every chapter after this, the “Testing” section at the end of the chapter will show
you how to write tests for the feature or features that were covered. Since this chapter
doesn’t cover a testable feature, let’s talk tests quickly. (To learn more about writing
and running tests in Laravel, head over to Chapter 12.)

Out of the box, Laravel brings in PHPUnit as a dependency and is configured to run
the tests in any file in the fests directory whose name ends with Test.php (for example,
tests/User Test.php).

So, the simplest way to write tests is to create a file in the tests directory with a name
that ends with Test.php. And the easiest way to run them is to run ./vendor/bin/
phpunit from the command line (in the project root).

If any tests require database access, be sure to run your tests from the machine where
your database is hosted—so if youre hosting your database in Vagrant, make sure to
ssh into your Vagrant box to run your tests from there. Again, you can learn about
this and much more in Chapter 12.

Testing | 21

https://github.com/tightenco/lambo

TL;DR

Since Laravel is a PHP framework, it’s very simple to serve it locally. Laravel also pro-
vides two tools for managing your local development: a simpler tool called Valet that
uses your local machine to provide your dependencies, and a preconfigured Vagrant
setup named Homestead. Laravel relies on, and can be installed by, Composer, and
comes out of the box with a series of folders and files that reflect both its conventions
and its relationship with other open source tools.

22 | Chapter2: Setting Up a Laravel Development Environment

CHAPTER 3
Routing and Controllers

The essential function of any web application framework is to take requests from a
user and deliver responses, usually via HTTP(S). This means defining an application’s
routes is the first and most important project to tackle when learning a web frame-
work; without routes, you have no ability to interact with the end user.

In this chapter we will examine routes in Laravel and show how to define them, how
to point them to the code they should execute, and how to use Laravel’s routing tools
to handle a diverse array of routing needs.

Route Definitions

In a Laravel application, you will define your “web” routes in routes/web.php and your
“APT” routes in routes/api.php. Web routes are those that will be visited by your end
users; API routes are those for your API, if you have one. For now, we'll primarily
focus on the routes in routes/web.php.

E In projects running versions of Laravel prior to 5.3, there will be
only one routes file, located at app/Http/routes.php.

The simplest way to define a route is to match a path (e.g., /) with a closure, as seen
in Example 3-1.

23

Example 3-1. Basic route definition

// routes/web.php
Route::get('/', function () {
return 'Hello, World!';

s

What's a Closure?

Closures are PHP’s version of anonymous functions. A closure is a function that you
can pass around as an object, assign to a variable, pass as a parameter to other func-
tions and methods, or even serialize.

You've now defined that, if anyone visits / (the root of your domain), Laravel’s router
should run the closure defined there and return the result. Note that we return our
content and don’t echo or print it.

A quick introduction to middleware

You might be wondering, “Why am I returning ‘Hello, World!?
instead of echoing it?”

There are quite a few answers, but the simplest is that there are a
lot of wrappers around Laravel's request and response cycle,
including something called middleware. When your route closure
or controller method is done, it’s not time to send the output to the
browser yet; returning the content allows it to continue flowing
through the response stack and the middleware before it is
returned back to the user.

Many simple websites could be defined entirely within the web routes file. With a few
simple GET routes combined with some templates as illustrated in Example 3-2, you
can serve a classic website easily.

Example 3-2. Sample website

Route::get('/', function () {
return view('welcome');

b

Route::get('about', function () {
return view('about');

s

Route::get('products', function () {

24 | Chapter3:Routing and Controllers

return view('products');

s

Route::get('services', function () {
return view('services');

s

Static calls

If you have much experience developing PHP, you might be sur-
prised to see static calls on the Route class. This is not actually a
static method per se, but rather service location using Laravel’s
facades, which we’ll cover in Chapter 11.

If you prefer to avoid facades, you can accomplish these same defi-
nitions like this:

$router->get('/', function () {
return 'Hello, World!';

s

HTTP Methods

If you're not familiar with the idea of HTTP methods, read on in this chapter for
more information, but for now, just know that every HTTP request has a “verb,” or
action, along with it. Laravel allows you to define your routes based on which verb
was used; the most common are GET and POST, followed by PUT, DELETE, and PATCH.
Each method communicates a different thing to the server, and to your code, about
the intentions of the caller.

Route Verbs

You might've noticed that we've been using Route: :get in our route definitions. This
means we'e telling Laravel to only match for these routes when the HTTP request
uses the GET action. But what if it’s a form POST, or maybe some JavaScript sending
PUT or DELETE requests? There are a few other options for methods to call on a route
definition, as illustrated in Example 3-3.

Example 3-3. Route verbs

Route::get('/', function () {
return 'Hello, World!';

s

Route::post('/', function () {});

Route::put('/', function () {});

Route Definitions | 25

Route::delete('/', function () {});
Route::any('/', function () {});

Route: :match(['get', 'post'], '/', function () {});

Route Handling

As you've probably guessed, passing a closure to the route definition is not the only
way to teach it how to resolve a route. Closures are quick and simple, but the larger
your application gets, the clumsier it becomes to put all of your routing logic in one
file. Additionally, applications using route closures can’t take advantage of Laravel’s
route caching (more on that later), which can shave up to hundreds of milliseconds
off of each request.

The other common option is to pass a controller name and method as a string in
place of the closure, as in Example 3-4.

Example 3-4. Routes calling controller methods

Route::get('/', 'WelcomeController@index');

This is telling Laravel to pass requests to that path to the index() method of the App
\Http\Controllers\WelcomeController controller. This method will be passed the
same parameters and treated the same way as a closure you might've alternatively put
in its place.

Route Parameters

If the route you're defining has parameters—segments in the URL structure that are
variable—it’s simple to define them in your route and pass them to your closure (see
Example 3-5).

Example 3-5. Route parameters
Route::get('users/{id}/friends', function ($id) {

//
s

26 | Chapter3:Routing and Controllers

The Naming Relationship Between Route Parameters
and Closure/Controller Method Parameters

As you can see in Example 3-5, it's most common to use the same names for your
route parameters ({1d}) and the method parameters they inject into your route defi-
nition (function ($id)). But is this necessary?

Unless you're using route/model binding, no. The only thing that defines which route
parameter matches with which method parameter is their order (left to right), as you
can see here:

Route::get('users/{userId}/comments/{commentId}', function (
SthisIsActuallyTheUserId,
SthisisReallyTheCommentId
) {
//
s

That having been said, just because you can make them different doesn’t mean you
should. I recommend keeping them the same for the sake of future developers, who
could get tripped up by inconsistent naming.

You can also make your route parameters optional by including a question mark (?)
after the parameter name, as illustrated in Example 3-6. In this case, you should also
provide a default value for the route’s corresponding variable.

Example 3-6. Optional route parameters
Route::get('users/{id?}', function ($id = 'fallbackId') {

//
1
And you can use regular expressions (regexes) to define that a route should only
match if a parameter meets particular requirements, as in Example 3-7.
Example 3-7. Regular expression route constraints
Route::get('users/{id}', function ($id) {

//
})->where('id', '[0-9]+');
Route::get('users/{username}', function (Susername) {

//

})->where('username', '[A-Za-z]+');

Route::get('posts/{id}/{slug}', function (id, Sslug) {

Route Definitions | 27

//
})->where(['id" => '"[0-9]+', 'slug' => '[A-Za-z]+']);

As you've probably guessed, if you visit a path that matches a route string, but the
regex doesn’t match the parameter, it won’t be matched. Since routes are matched top
to bottom, users/abc would skip the first closure in Example 3-7, but it would be
matched by the second closure, so it would get routed there. On the other hand,
posts/abc/123 wouldn't match any of the closures, so it would return a 404 Not
Found error.

Route Names

The simplest way to refer to these routes elsewhere in your application is just by their
path. There’s a url() helper to simplify that linking in your views, if you need it; see
Example 3-8 for an example. The helper will prefix your route with the full domain of
your site.

Example 3-8. URL helper

<a href="<?php echo url('/"); ?>">
// outputs

However, Laravel also allows you to name each route, which enables you to refer to it
without explicitly referencing the URL. This is helpful because it means you can give
simple nicknames to complex routes, and also because linking them by name means
you don’t have to rewrite your frontend links if the paths change (see Example 3-9).

Example 3-9. Defining route names

// Defining a route with name in routes/web.php:
Route::get('members/{id}', 'MembersController@show')->name('members.show');

// Link the route in a view using the route() helper
<a href="<?php echo route('members.show', ['id' => 14]); ?>">

This example illustrates a few new concepts. First, were using fluent route definition
to add the name, by chaining the name() method after the get() method. This
method allows us to name the route, giving it a short alias to make it easier to refer-
ence elsewhere.

28 | (Chapter3:Routing and Controllers

Defining custom routes in Laravel 5.1

Fluent route definitions don’t exist in Laravel 5.1. You’ll need to
instead pass an array to the second parameter of your route def-
inition; check the Laravel docs to see more about how this works.
Here’s Example 3-9 in Laravel 5.1:
Route::get('members/{id}', [
'as' => 'members.show',
'uses' => 'MembersController@show'

D;

In our example, we've named this route members. show; resourcePlural.actionis a
common convention within Laravel for route and view names.

Route Naming Conventions

You can name your route anything youd like, but the common convention is to use
the plural of the resource name, then a period, then the action. So, here are the routes
most common for a resource named photo:

photos.index
photos.create
photos.store
photos.show
photos.edit
photos.update
photos.destroy

To learn more about these conventions, see “Resource Controllers” on page 41.

We also introduced the route() helper. Just like url(), its intended to be used in
views to simplify linking to a named route. If the route has no parameters, you can
simply pass the route name: (route('members.index')) and receive a route string
http://myapp.com/members/index). If it has parameters, pass them in as an array as
the second parameter like we did in this example.

In general, I recommend using route names instead of paths to refer to your routes,
and therefore using the route() helper instead of the url() helper. Sometimes it can
get a bit clumsy—for example, if youre working with multiple subdomains—but it
provides an incredible level of flexibility to later change the application’s routing
structure without major penalty.

Route Definitions | 29

Passing Route Parameters to the route() Helper

When your route has parameters (e.g., users/{id}), you need to define those param-
eters when you're using the route() helper to generate a link to the route.

There are a few different ways to pass these parameters. Let’s imagine a route defined
as users/{userId}/comments/{commentId}. If the user ID is 1 and the comment ID
is 2, let’s look at a few options we have available to us:
Option 1:
route('users.comments.show', [1, 2])
// http://myapp.com/users/1/comments/2
Option 2:
route('users.comments.show', ['userId' => 1, 'commentId' => 2])
// http://myapp.com/users/1/comments/2
Option 3:
route('users.comments.show', ['commentId' => 2, 'userId' => 1])
// http://myapp.com/users/1/comments/2
Option 4:

route('users.comments.show', ['userId' => 1, 'commentId' => 2, 'opt' => 'a'])
// http://myapp.com/users/1/comments/2?opt=a
As you can see, nonkeyed array values are assigned in order; keyed array values are
matched with the route parameters matching their keys, and anything left over is
added as a query parameter.

Route Groups

Often a group of routes share a particular characteristic—a certain authentication
requirement, a path prefix, or perhaps a controller namespace. Defining these shared
characteristics again and again on each route not only seems tedious but also can
muddy up the shape of your routes file and obscure some of the structures of
your application.

Route groups allow you to group several routes together, and apply any shared con-
figuration settings once to the entire group, to reduce this duplication. Additionally,
route groups are visual cues to future developers (and to your own brain) that these
routes are grouped together.

30 | Chapter3:Routing and Controllers

To group two or more routes together, you “surround” the route definitions with a
route group, as shown in Example 3-10. In reality, you're actually passing a closure to
the group definition, and defining the grouped routes within that closure.

Example 3-10. Defining a route group

Route::group([], function () {
Route::get('hello', function () {
return 'Hello';

b
Route::get('world', function () {
return 'World';
H;
b

By default, a route group doesn’t actually do anything. There’s no difference between
the group in Example 3-10 and separating a segment of your routes with code
comments. The empty array that’s the first parameter, however, allows you to pass a
variety of configuration settings that will apply to the entire route group.

Middleware

Probably the most common use for route groups is to apply middleware to a group of
routes. We'll learn more about middleware in Chapter 10, but, among other things,
they’re what Laravel uses for authenticating users and restricting guest users from
using certain parts of a site.

In Example 3-11, were creating a route group around the dashboard and account
views and applying the auth middleware to both. In this example, it means users have
to be logged in to the application to view the dashboard or the account page.

Example 3-11. Restricting a group of routes to logged-in users only

Route: :group(['middleware' => 'auth'], function () {
Route: :get('dashboard', function () {
return view('dashboard');
s
Route::get('account', function () {
return view('account');
b
s

Route Groups | 31

Applying middleware in controllers

Often it’s clearer and more direct to attach middleware to your
routes in the controller instead of at the route definition. You can
do this by calling the middleware() method in the constructor of
your controller. The string you pass to the middleware() method is
the name of the middleware, and you can optionally chain modifier
methods (only() and except()) to define which methods will
receive that middleware:

class DashboardController extends Controller

{
public function __construct()
{
Sthis->middleware('auth');
Sthis->middleware('admin-auth')
->only('admin');
$this->middleware(' team-member")
->except('admin');
}
}

Note that, if youre doing a lot of “only” and “except” customiza-
tions, that’s often a sign that you should break out a new controller
for the exceptional routes.

Path Prefixes

If you have a group of routes that share a segment of their path—for example, if your
site’s API is prefixed with /api—you can use route groups to simplify this structure
(see Example 3-12).

Example 3-12. Prefixing a group of routes

Route: :group(['prefix' => 'api'], function () {
Route::get('/', function () {
// Handles the path /api
H;
Route::get('users', function () {
// Handles the path /api/users
b
H;

Note that each prefixed group also has a / route that represents the root of the prefix
—in Example 3-12 that’s /api.

32 | Chapter3:Routing and Controllers

Subdomain Routing

Subdomain routing is the same as route prefixing, but it's scoped by subdomain
instead of route prefix. There are two primary uses for this. First, you may want to
present different sections of the application (or entirely different applications) to dif-
ferent subdomains. Example 3-13 shows how you can achieve this.

Example 3-13. Subdomain routing

Route: :group(['domain' => 'api.myapp.com'], function () {
Route::get('/', function () {
//
b
D

Second, you might want to set part of the subdomain as a parameter, as illustrated in
Example 3-14. This is most often done in cases of multitenancy (think Slack or Har-
vest, where each company gets its own subdomain, like tighten.slack.co).

Example 3-14. Parameterized subdomain routing

Route: :group(['domain' => '{account}.myapp.com'], function () {
Route::get('/', function (S$Saccount) {
//

H;
Route::get('users/{id}', function ($account, $id) {

//
19K
i9H

Note that any parameters for the group get passed into the grouped routes’ methods
as the first parameter(s).

Namespace Prefixes

When youre grouping routes by subdomain or route prefix, it’s likely their control-
lers have a similar PHP namespace. In the API example, all of the API routes’ con-
trollers might be under an API namespace. By using the route group namespace
prefix, as shown in Example 3-15, you can avoid long controller references in groups
like "API/ControllerA@index" and "API/ControllerB@index".

Example 3-15. Route group namespace prefixes

// App|\Http|Controllers|ControllerA
Route::get('/', 'ControllerA@index');

Route: :group(['namespace' => 'API'], function () {

Route Groups | 33

// App|\Http|Controllers|\API\ControllerB
Route::get('api/', 'ControllerB@index"');
s

Name Prefixes

The prefixes don’t stop there. It's common that route names will reflect the inheri-
tance chain of path elements, so users/comments/5 will be served by a route named
users.comments.show. In this case, it's common to use a route group around all of
the routes that are beneath the users.comments resource.

Just like we can prefix URL segments and controller namespaces, we can also prefix
strings to the route name. With route group name prefixes, we can define that every
route within this group should have a given string prefixed to its name. In this con-
text, were prefixing "users." to each route name, then "comments." (see
Example 3-16).

Example 3-16. Route group name prefixes

Route::group(['as' => 'users.', 'prefix' => 'users'], function () {
Route::group(['as' => 'comments.', 'prefix' => 'comments'], function () {
// Route name will be users.comments.show
Route::get('{id}"', function () {
//

})->name('show');
s
s

Views

In a few of the route closures we've looked at so far, we've seen something along the
lines of return view('account'). What’s going on here?

If youre not familiar with the Model-View-Controller (MVC) pattern, views (or
templates) are files that describe what some particular output should look like. You
might have views for JSON or XML or emails, but the most common views in a web
framework output HTML.

In Laravel, there are two formats of view you can use out of the box: plain PHP, or
Blade templates (see Chapter 4). The difference is in the filename: about.php will
be rendered with the PHP engine, and about.blade.php will be rendered with the
Blade engine.

34 | Chapter3:Routing and Controllers

Three ways to load a view()

There are three different ways to return a view. For now, just con-
cern yourself with view(), but if you ever see View: :make(), it’s the
same thing, and you could also inject the Il1luminate\View\View
Factory if you prefer.

Once you've loaded a view, you have the option to simply return it (as in
Example 3-17), which will work fine if the view doesn’t rely on any variables from
the controller.

Example 3-17. Simple view() usage

Route::get('/', function () {
return view('home');

s

This code looks for a view in resources/views/home.blade.php or resources/views/
home.php, and loads its contents and parses any inline PHP or control structures until
you have just the view’s output. Once you return it, it's passed on to the rest of the
response stack and eventually returned to the user.

But what if you need to pass in variables? Take a look at Example 3-18.

Example 3-18. Passing variables to views

Route::get('tasks', function () {
return view('tasks.index')
->with('tasks', Task::all());
s

This closure loads the resources/views/tasks/index.blade.php or resources/views/tasks/
index.php view and passes it a single variable named tasks, which contains the result
of the Task::all() method. Task::all() is an Eloquent database query we'll learn
about in Chapter 8.

Using View Composers to Share Variables with Every View

Sometimes it can become a hassle to pass the same variables over and over. There
may be a variable that you want accessible to every view in the site, or to a certain
class of views or a certain included subview—for example, all views related to tasks,
or the header partial.

It’s possible to share certain variables with every template or just certain templates,
like in the following code:

view()->share('variableName', 'variableValue');

Views | 35

To learn more, check out “View Composers and Service Injection” on page 64.

Controllers

I've mentioned controllers a few times, but until now most of the examples have
shown route closures. If youre not familiar with the MVC pattern (Figure 3-1), con-
trollers are essentially classes that organize the logic of one or more routes together in
one place. Controllers tend to group similar routes together, especially if your appli-
cation is structured along a traditionally CRUD-like format; in this case, a controller
might handle all the actions that can be performed on a particular resource.

Figure 3-1. A basic illustration of MVC

What is CRUD?

CRUD stands for create, read, update, delete, which are the four pri-
mary operations that web applications most commonly provide on
a resource. For example, you can create a new blog post, you can
read that post, you can update it, or you can delete it.

It may be tempting to cram all of the application’s logic into the controllers, but it’s
better to think of controllers as the traffic cops that route HTTP requests around
your application. Since there are other ways requests can come into your application
—cron jobs, Artisan command-line calls, queue jobs, etc.—it’s wise to not rely on
controllers for much behavior. This means a controller’s primary job is to capture the
intent of an HTTP request and pass it on to the rest of the application.

So, let’s create a controller. One easy way to do this is with an Artisan command, so
from the command line run the following:

php artisan make:controller TasksController

36 | Chapter3:Routing and Controllers

Artisan and Artisan generators

Laravel comes bundled with a command-line tool called Artisan.
Artisan can be used to run migrations, create users and other
database records manually, and perform many other manual, one-
time tasks.

Under the make namespace, Artisan provides tools for generating
skeleton files for a variety of system files. That's what allows us to
run php artisan make:controller.

To learn more about this and other Artisan features, see Chapter 7.

This will create a new file named TasksController.php in app/Http/Controllers, with the
contents shown in Example 3-19.

Example 3-19. Default generated controller

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Http\Requests;

class TasksController extends Controller

{

}

Modity this file as shown in Example 3-20, creating a new public method called
home (). We'll just return some text there.

Example 3-20. Simple controller example

<?php

use App\Http\Controllers\Controller;

class TasksController extends Controller

{
public function home()
{
return 'Hello, World!';
}
}

Then like we learned before, we'll hook up a route to it, as shown in Example 3-21.

Controllers | 37

Example 3-21. Route for the simple controller

// routes/web.php
<?php

Route::get('/', 'TasksController@home');

That’s it. Visit the / route and you’ll see the words “Hello, World!”

Controller Namespacing

In Example 3-21 we referenced a controller with the fully qualified class name of App
\Http\Controllers\TasksController, but we only used the class name. This isn’t
because we can simply reference controllers by their class name. Rather, we can
ignore the App\Http\Controllers\ when we reference controllers; by default, Laravel
is configured to look for controllers within that namespace.

This means that if you have a controller with the fully qualified class name of App
\Http\Controllers\API\ExercisesController, youd reference it in a route defini-
tion as API\ExercisesController.

The most common use of a controller method, then, will be something like
Example 3-22.

Example 3-22. Common controller method example
// TasksController.php

public function index()

{

return view('tasks.index')
->with('tasks', Task::all());
}

This controller method loads the resources/views/tasks/index.blade.php or resources/
views/tasks/index.php view and passes it a single variable named tasks, which con-
tains the result of the Task: :all() Eloquent method.

Generating resource controllers

E If you ever used php artisan make:controller in Laravel

prior to 5.3, you might be expecting it to autogenerate methods
for all of the basic resource routes like create() and update(). You
can bring this behavior back in Laravel 5.3 by passing the --
resource flag when you create the controller:

php artisan make:controller TasksController --resource

38 | Chapter3:Routing and Controllers

Getting User Input

The second most common action to perform in a controller method is to take input
from the user and act on it. That introduces a few new concepts, so let’s take a look at
a bit of sample code and walk through the new pieces.

First, let’s bind it quickly; see Example 3-23.

Example 3-23. Binding basic form actions
// routes/web.php
Route::get('tasks/create', 'TasksController@create');

Route: :post('tasks', 'TasksController@store');

Notice that were binding the GET action of tasks/create (which shows the form)
and the POST action of tasks/ (which is where we POST when we're creating a new
task). We can assume the create() method in our controller just shows a form, so
let’s look at the store() method in Example 3-24.

Example 3-24. Common form input controller method

// TasksController.php

public function store()

{
Stask = new Task;
Stask->title = Input::get('title');
$task->description = Input::get('description');
Stask->save();
return redirect('tasks');

}

This example makes use of Eloquent models and the redirect() functionality, and
we'll talk about them more later, but you can see what were doing here: we create a
new Task, pull data out of the user input and set it on the task, save it, and then redi-
rect back to the page that shows all tasks.

There are two main ways to get user input from a POST: the Input facade, which we
used here, and the Request object, which we’ll talk about next.

Controllers | 39

Importing facades

If you follow any of these examples, whether in controllers or

\ any other PHP class that is namespaced, you might find errors
showing that the facade cannot be found. This is because theyre
not present in every namespace, but rather they’re made available
in the root namespace.

So, in Example 3-24, wed need to import the Input facade at the
top of the file. There are two ways to do that: either we can import
\Input, or we can import Illuminate\Support\Facades\Input.
For example:

<?php
namespace App\Http\Controllers;
use Illuminate\Support\facades\Input;

class TasksController

{

public function store()

{
Stask = new Task;
Stask->title = Input::get('title');
$task->description = Input::get('description');
Stask->save();
return redirect('tasks');

}

As you can see, we can get the value of any user-provided information, whether from
a query parameter or a POST value, using Input::get('fieldName'). So our user fil-
led out two fields on the “add task” page: “title” and “description” We retrieve both
using the Input facade, save them to the database, and then return.

Injecting Dependencies into Controllers

Laravel’s facades present a simple interface to the most useful classes in Laravels
codebase. You can get information about the current request and user input, the ses-
sion, caches, and much more.

But if you prefer to inject your dependencies, or if you want to use a service that
doesn’t have a facade, you’ll need to find some way to bring instances of these classes
into your controller.

This is our first exposure to Laravel’s service container. For now, if this is unfamiliar,
you can think about it as a little bit of Laravel magic; or, if you want to know more
about how it’s actually functioning, you can skip ahead to Chapter 11.

40 | Chapter3:Routing and Controllers

All controller methods (including the constructors) are resolved out of Laravel’s con-
tainer, which means anything you typehint that the container knows how to resolve
will be automatically injected.

As a nice example, what if youd prefer having an instance of the Request object
instead of using the facade? Just typehint I1luminate\Http\Request in your method
parameters, like in Example 3-25.

Example 3-25. Controller method injection via typehinting
// TasksController.php

public function store(\Illuminate\Http\Request Srequest)

{
Stask = new Task;
Stask->title = S$request->input('title');
$task->description = Srequest->input('description');
$Stask->save();
return redirect('tasks');

}

So, you've defined a parameter that must be passed into the store() method. And
since you typehinted it, and since Laravel knows how to resolve that class name,
you're going to have the Request object ready for you to use in your method with no
work on your part. No explicit binding, no anything else—its just there as the
Srequest variable.

By the way, this is actually how I and many other Laravel developers prefer to get the
user input: inject an instance of the Request and read the user input from there,
instead of relying on the Input facade.

Resource Controllers

Sometimes naming the methods in your controllers can be the hardest part of writing
a controller. Thankfully, Laravel has some conventions for all of the routes of a tradi-
tional REST/CRUD controller (called a “resource controller” in Laravel); additionally,
it comes with a generator out of the box and a convenience route definition that
allows you to bind an entire resource controller at once.

To see the methods that Laravel expects for a resource controller, let’s generate a new
controller from the command line:

php artisan make:controller MySampleResourceController --resource

Now open app/Http/Controllers/MySampleResourceController.php. You'll see it comes
prefilled with quite a few methods. Let’s walk over what each represents. We'll use a
Task as an example.

Controllers | 41

The methods of Laravel’s resource controllers

For each, you can see the HTTP verb, the URL, the controller method name, and the
“name” Table 3-1 shows the HTTP verb, the URL, the controller method name, and
the “name” for each of these default methods.

Table 3-1. The methods of Laravels resource controllers

Verb URL Controller method Name Description

GET tasks index() tasks.index Show all tasks

GET tasks/create create() tasks.create Show the create task form

POST tasks store() tasks.store Accept form submission from the create
task form

GET tasks/{task} show() tasks.show Show one task

GET tasks/ edit() tasks.edit Edit one task

{task}/edit

PUT/PATCH tasks/{task} update() tasks.update Accept form submission from the edit task
form

DELETE tasks/{task} destroy() tasks.destroy Delete one task

Binding a resource controller

So, we've seen that these are the conventional route names to use in Laravel, and also
that it’s easy to generate a resource controller with methods for each of these default
routes. Thankfully, you don’t have to generate routes for each of these controller
methods by hand, if you don’t want to. Instead, theres a trick for that, and it’s called
“resource controller binding” Take a look at Example 3-26.

Example 3-26. Resource controller binding

// routes/web.php
Route::resource('tasks', 'TasksController');

This will automatically bind all of the routes for this resource to the appropriate
method names on the specified controller. It'll also name these routes appropriately;
for example, the index() method on the tasks resource controller will be named
tasks.index.

artisan route:list

If you ever find yourself in a situation where youre wondering
what routes your current application has available, there’s a tool for
that: from the command line, run php artisan route:list and
you'll get a listing of all of the available routes (see Figure 3-2).

42 | Chapter 3: Routing and Controllers

Figure 3-2. php artisan route:list example

Route Model Binding

One of the most common routing patterns is that the first line of any controller
method tries to find the resource with the given ID, like in Example 3-27.

Example 3-27. Getting a resource for each route

Route::get('conferences/{id}', function ($id) {
$conference = Conference::findOrFail($id);

s

Laravel provides a feature that simplifies this pattern called “route model binding”
This allows you to define that a particular parameter name (e.g., {conference}) will
indicate to the route resolver that it should look up an Eloquent record with that ID
and then pass it in as the parameter instead of just passing the ID.

There are two kinds of route model binding: implicit and custom (or explicit).

Implicit Route Model Binding

The simplest way to use route model binding is to name your route parameter some-
thing unique to that model (e.g., name it $conference instead of $id), then typehint
that parameter in the closure/controller method and use the same variable name
there. It’s easier to show than to describe, so take a look at Example 3-28.

Example 3-28. Using an explicit route model binding

Route: :get('conferences/{conference}', function (Conference $conference) {
return view('conferences.show')->with('conference', $conference);

s

Because the route parameter ({conference}) is the same as the method parameter
($conference), and the method parameter is typehinted with a Conference model
(Conference S$conference), Laravel sees this as a route model binding. Every time

Route Model Binding | 43

this route is visited, the application will assume that whatever is passed into the URL
in place of {conference} is an ID that should be used to look up a Conference,
and then that resulting model instance will be passed in to your closure or controller
method.

Customizing the route key for an Eloquent model

Any time an Eloquent model is looked up via a URL segment (usu-
ally because of route model binding), the default column Eloquent
will look it up by is its primary key (ID).

To change the column your Eloquent model uses for URL lookups,
add a method to your model named getRouteKeyName():

public function getRouteKeyName()
{

return 'slug';

}

Now, a URL like conferences/{conference} will expect to get the
slug instead of the ID, and will perform its lookups accordingly.

Implicit route model binding was added in Laravel 5.2, so you won't have access to it
w
in5.1.

Custom Route Model Binding

To manually configure route model bindings, add a line like the one in Example 3-29
to the boot() method in App\Providers\RouteServiceProvider.

Example 3-29. Adding a route model binding

public function boot(Router $router)

{
// Just allows the parent's boot() method to still run
parent: :boot($router);
// Perform the binding
Srouter->model('event', Conference::class);
}

You've now defined that whenever a route has a parameter in its definition named
{event}, as demonstrated in Example 3-30, the route resolver will return an instance
of the Conference class with the ID of that URL parameter.

44 | Chapter 3: Routing and Controllers

Example 3-30. Using an explicit route model binding

Route::get('events/{event}', function (Conference $event) {
return view('events.show')->with('event', $Sevent);

s

Route Caching

If you're looking to squeeze every millisecond out of your load time, you may want to
take a look at route caching. One of the pieces of Laravel’s bootstrap that can take
anywhere from a few dozen to a few hundred milliseconds is parsing the routes/* files,
and route caching speeds up this process dramatically.

To cache your routes file, you need to be using all controller and resource routes (no
route closures). If your app isn’t using any route closures, you can run php artisan
route:cache, Laravel will serialize the results of your routes/* files. If you want to
delete the cache, run php artisan route:clear.

Here’s the drawback: Laravel will now match routes against that cached file instead of
your actual routes/* files. You can make endless changes to those files, and they won’t
take effect until you run route:cache again. This means you’ll have to recache every
time you make a change, which introduces a lot of potential for confusion.

Here’s what I would recommend instead: since Git ignores the route cache file by
default anyway, consider only using route caching on your production server, and run
the php artisan route:cache command every time you deploy new code (whether
via a Git post-deploy hook, a Forge deploy command, or as a part of whatever other
deploy system you use). This way you won’t have confusing local development issues,
but your remote environment will still benefit from route caching.

Form Method Spoofing

Sometimes, you need to manually define which HT'TP verb a form should send as.
HTML forms only allow for GET or POST, so if you want any other sort of verb, you'll
need to specify that yourself.

An Introduction to HTTP Verbs

We've talked about the GET and POST HTTP verbs already. If you're not familiar with
HTTP verbs, the other two most common ones are PUT and DELETE, but there’s also
HEAD, OPTIONS, PATCH, and two others that are pretty much never used in normal web
development, TRACE and CONNECT.

Route Caching | 45

Here’s the quick rundown: GET requests a resource and HEAD asks for a headers-only
version of the GET, POST creates a resource, PUT overwrites a resource and PATCH
modifies a resource, DELETE deletes a resource, and OPTIONS asks the server which
verbs are allowed at this URL.

HTTP Verbs in Laravel

As we've shown already, you can define which verbs a route will match in the route
definition using Route::get(), Route::post(), Route::any(), or Route: :match().
You can also match with Route: :patch(), Route: :put(), and Route: :delete().

But how does one send a request other than GET with a web browser? First, the
method attribute in an HTML form determines its HTTP verb: if your form has a
method of "GET", it will submit via query parameters and a GET method; if the form
has a method of "POST", it will submit via the post body and a POST method.

JavaScript frameworks make it easy to send other requests, like DELETE and PATCH.
But if you find yourself needing to submit HTML forms in Laravel with verbs other
than GET or POST, you’ll need to use form method spoofing, which is spoofing the
HTTP method in an HTML form.

HTTP Method Spoofing in HTML Forms

To inform Laravel that the form youre currently submitting should be treated as
something other than POST, add a hidden variable named _method with the value of
either "PUT", "PATCH", or "DELETE", and Laravel will match and route that form sub-
mission as if it were actually a request with that verb.

The form in Example 3-31, since it’s passing Laravel the method of "DELETE", will
match routes defined with Route: :delete() but not those with Route: :post().

Example 3-31. Form method spoofing

<form action="/tasks/5" method="POST">
<input type="hidden" name="_method" value="DELETE">
</form>

CSRF Protection

If you've tried to create and submit a form in a Laravel application already—including
the form in Example 3-31—you’ve likely run into the dreaded TokenMismatchExcep
tion.

By default, all routes in Laravel except “read-only” routes (those using GET, HEAD, or
OPTIONS) are protected against cross-site request forgery (CSRF) attacks by requiring

46 | Chapter 3:Routing and Controllers

a token, in the form of an input named _token, to be passed along with each request.
This token is generated at the start of every session, and every non-read-only route
compares the submitted _token against the session token.

What is CSRF?

A cross-site request forgery is when one website pretends to be
another. The goal is for someone to hijack your users’ access to
your website, by submitting forms from their website to your web-
site via the logged-in user’s browser.

The best way around CSRF attacks is to protect all inbound routes
—POST, DELETE, etc.—with a token, which Laravel does out of
the box.

You have two options for getting around this. The first, and preferred, method is to
add the _token input to each of your submissions. In HTML forms, that’s simple;
look at Example 3-32.

Example 3-32. CSRF tokens

<form action="/tasks/5" method="POST">
<?php echo csrf_field(); ?>
<!--or: -->
<input type="hidden" name=
</form>

_token" value="<?php echo csrf_token(); ?>">

In JavaScript applications, it’s a bit more work, but not much. The most common sol-
ution for sites using JavaScript frameworks is to store the token on every page in a
<meta> tag like this one:

<meta name="csrf-token" content="<?php echo csrf_token(); ?>" id="token">

Storing the token in a <meta> tag makes it easy to bind it to the correct HTTP header,
which you can do once globally for all requests from your JavaScript framework, like
in Example 3-33.

Example 3-33. Globally binding a header for CSRF

// in jQuery:
$.ajaxSetup({
headers: {
'X-CSRF-TOKEN': $('meta[name="csrf-token"]"').attr('content')
}
s

// in Vue:
Vue.http.interceptors.push((request, next) => {

CSRF Protection | 47

request.headers['X-CSRF-TOKEN'] =
document.querySelector('#token').getAttribute('content');

next();
s

Laravel will check the X-CSRF-TOKEN on every request, and valid tokens passed there
will mark the CSRF protection as satisfied.

Note that the Vue syntax for CSRF in this example is not necessary if youre working
with the 5.3 Vue bootstrap; it already does this work for you.

Redirects

So far the only things we've returned from a controller method or route definition
have been views. But there are a few other structures we can return to give the
browser instructions on how to behave.

First, let’s cover the redirect. There are two common ways to generate a redirect; we'll
use the redirect global helper here, but you may prefer the facade. Both create an
instance of Illuminate\Http\RedirectResponse, perform some convenience meth-
ods on it, and then return it. You can also do this manually, but youll have to do a
little more work yourself. Take a look at Example 3-34 to see a few ways you can
return a redirect.

Example 3-34. Different ways to return a redirect

// Using the global helper to generate a redirect response
Route::get('redirect-with-helper', function () {
return redirect()->to('login');

s

// Using the global helper shortcut
Route::get('redirect-with-helper-shortcut', function () {
return redirect('login');

s

// Using the facade to generate a redirect response
Route::get('redirect-with-facade', function () {
return Redirect::to('login');

s

Note that the redirect() helper exposes the same methods as the Redirect facade,
but it also has a shortcut; if you pass parameters directly to the helper, instead of
chaining methods after it, it’s a shortcut to the to() redirect method.

48 | Chapter 3:Routing and Controllers

redirect()->to()
The method signature for the to() method for redirects looks like this:

function to($to = null, $status = 302, $headers = [], $secure = null)

$to is a valid internal path; $status is the HTTP status (defaulting to 302 FOUND);
$headers allows you to define which HTTP headers to send along with your redirect;
and $secure allows you to override the default choice of http versus https (which is
normally set based on your current request URL). Example 3-35 shows another
example of its use.

Example 3-35. redirect()->to()

Route::get('redirect', function () {
return redirect()->to('home");

// or same, using the shortcut:

return redirect('home');

s

redirect()->route()

The route() method is the same as the to() method, but rather than pointing to a
particular path, it points to a particular route name (see Example 3-36).

Example 3-36. redirect()->route()

Route::get('redirect', function () {
return redirect()->route('conferences.index"');

s

Note that, since some route names require parameters, its parameter order is a little
different. route() has an optional second parameter for the route parameters:

function route($to = null, S$parameters = [], $status = 302, Sheaders = [])

So, using it might look a little like Example 3-37.

Example 3-37. redirect()->route() with parameters

Route::get('redirect', function () {
return redirect()->route('conferences.show', ['conference' => 99]);

s

Redirects | 49

redirect()->back()

Because of some of the built-in conveniences of Laravel’s session implementation,
your application will always have knowledge of what the user’s previously visited page
was. That opens up the opportunity for a redirect()->() redirect, which simply
redirects the user to whatever page she came from. There’s also a global shortcut for
this: back().

Other Redirect Methods

The redirect service provides other methods that are less commonly used, but still
available:

« home() redirects to a route named home.
« refresh() redirects to the same page the user is currently on.

o away() allows for redirecting to an external URL without the default URL valida-
tion.

o secure() is like to() with the secure parameter set to "true".

o action() allows you to link to a controller and method like this: redirect()-
>action('MyController@myMethod').

« guest() is used internally by the auth system (discussed in Chapter 9); when a
user visits a route he’s not authenticated for, this captures the “intended” route
and then redirects the user (usually to a login page).

« intended() is also used internally by the auth system; after a successful authenti-
cation, this grabs the “intended” URL stored by the guest() method and redi-
rects the user there.

redirect()->with()

When you're redirecting users to different pages, you often want to pass certain data
along with them. You could manually flash the data to the session, but Laravel has
some convenience methods to help you with that.

Most commonly, you can pass along either an array of keys and values or a single key
and value using with(), like in Example 3-38.

Example 3-38. Redirect with data

Route::get('redirect-with-key-value', function () {
return redirect('dashboard")
->with('error', true);

s

50 | Chapter3:Routing and Controllers

Route::get('redirect-with-array', function () {
return redirect('dashboard')
->with(['error' => true, 'message' => 'Whoops!']);

s

Chaining methods on redirects

As with many other facades, most calls to the Redirect facade
can accept fluent method chains, like the with() calls in
Example 3-38. Learn more about fluency in “What Is a Fluent
Interface?” on page 146.

You can also use withInput(), as in Example 3-39, to redirect with the user’s form
input flashed; this is most common in the case of a validation error, where you want
to send the user back to the form she just came from.

Example 3-39. Redirect with form input

Route::get('form', function () {
return view('form');

s

Route::post('form', function () {
return redirect('form')
->withInput()
->with(['error' => true, 'message' => 'Whoops!']);

s

The easiest way to get the flashed input that was passed with withInput() is using the
old() helper, which can be used to get all old input (old()) or just the value for a
particular key (old('username'), with the second parameter as the default if there is
no old value). You'll commonly see this in views, which allows this HTML to be used
both on the “create” and the “edit” view for this form:

<input name="username" value="<?=
old('username', 'Default username instructions here');

7>">

Speaking of validation, there is also a useful method for passing errors along with a
redirect response: withErrors(). You can pass it any “provider” of errors, which may
be an error string, an array of errors, or, most commonly, an instance of the Illumi-
nate Validator, which we'll cover in Chapter 10. Example 3-40 shows an example of
its use.

Redirects | 51

Example 3-40. Redirect with errors

Route::post('form', function () {
Svalidator = Validator::make(Srequest->all()), S$this->validationRules);

if (Svalidator->fails()) {
return redirect('form")
->withErrors($validator)
->withInput();
}
H;

withErrors() automatically shares an $errors variable with the views of the page it’s
redirecting to, for you to handle however youd like.

The validate() shortcut in controller methods

Like how Example 3-40 looks? If youre defining your routes in a
controller, there’s a simple and powerful tool that cleans up that
code. Read more in “validate() in the Controller Using ValidatesRe-
quests” on page 103.

Aborting the Request

Aside from returning views and redirects, the most common way to exit a route is to
abort. There are a few globally available methods (abort(), abort_if(), and
abort_unless()), which optionally take HT TP status codes, a message, and a headers
array as parameters.

As Example 3-41 shows, abort_if() and abort_unless() take a first parameter that
is evaluated for its truthiness, and perform the abort depending on the result.

Example 3-41. 403 Forbidden aborts

Route: :post('something-you-cant-do', function (Illuminate\Http\Request) {
abort(403, 'You cannot do that!');
abort_unless($request->has('magicToken'), 403);
abort_1if($request->user()->isBanned, 403);

s

Custom Responses

There are a few other options available for us to return, so let’s go over the most com-
mon responses after views, redirects, and aborts. Just like with redirects, you can
either use the response() helper or the Response facade to run these methods on.

52 | Chapter3:Routing and Controllers

response()->make()

If you want to create an HTTP response manually, just pass your data into the first
parameter of response()->make(): e.g., return response()->make('Hello,
World!'). Once again, the second parameter is the HTTP status code and the third is
your headers.

response()->json() and ->jsonp()

To create a JSON-encoded HTTP response manually, pass your JSON-able content
(arrays, collections, or whatever else) to the json() method: e.g., return
response()->json(User::all());. It’s just like make(), except it json_encodes your
content and sets the appropriate headers.

response()->download() and ->file()

To send a file for the end user to download, pass either an SplFileInfo instance or a
string filename to download(), with an optional second parameter of the filename:
e.g., return response()->download('file501751.pdf"', 'myFile.pdf').

To display the same file in the browser (if it's a PDF or an image or something else
the browser can handle), use response()->file() instead, which takes the same
parameters.

Testing

In some other communities, the idea of unit testing controller methods is common,
but within Laravel (and most of the PHP community), it's most common to rely on
application testing to test the functionality of routes.

For example, to verify that a POST route works correctly, we can write a test like
Example 3-42.
Example 3-42. Writing a simple POST route test

// AssignmentTest.php
public function test_post_creates_new_assignment()

{
$this->post('/assignments', [
'title' => 'My great assignment'
s
$this->seeInDatabase('assignments', [
'title' => 'My great assignment'
s
1

Testing | 53

Did we directly call the controller methods? No. But we ensured that the goal of this
route—to receive a POST and save its important information to the database—
was met.

You can also use similar syntax to visit a route and verify that certain text shows up
on the page, or that clicking certain buttons does certain things (see Example 3-43).
Example 3-43. Writing a simple GET route test

// AssignmentTest.php
public function test_list_page_shows_all_assignments()

{
$assignment = Assignment::create([
"title' => 'My great assignment'
s
$this->visit('assignments')
->see(['My great assignment']);
}

TL;DR

Laravel's routes are defined in routes/web.php and routes/api.php, where you can
define the expected path for each route, which segments are static and which are
parameters, which HTTP verbs can access the route, and how to resolve it. You can
also attach middleware to routes, group them, and give them names.

What is returned from the route closure or controller method dictates how Laravel
responds to the user. If it’s a string or a view, it’s presented to the user; if it's other sorts
of data, it’s converted to JSON and presented to the user; and if it’s a redirect, it forces
a redirect.

Laravel provides a series of tools and conveniences to simplify common routing-
related tasks and structures. These include resource controllers, route model binding,
and form method spoofing.

54 | Chapter3:Routing and Controllers

CHAPTER 4

Blade Templating

Compared to most other backend languages, PHP actually functions relatively well as
a templating language. But it has its shortcomings, and it’s also just ugly to be using
<?php inline all over the place, so you can expect most modern frameworks to offer a
templating language.

Laravel offers a custom templating engine called Blade, which is inspired by .NET’s
Razor engine. It boasts a concise syntax, a shallow learning curve, a powerful and
intuitive inheritance model, and easy extensibility.

For a quick look at what writing Blade looks like, check out Example 4-1.

Example 4-1. Blade samples

<h1>{{ $group->title }}</h1>
{!! $group->heroImageHtml() !'!}

@forelse (Susers as S$user)

o {{ Suser->first_name }} {{ Suser->last_name }}

@empty

No users in this group.
@endforelse

As you can see, Blade introduces a convention in which its custom tags, called “direc-
tives,” are prefixed with an @ You'll use directives for all of your control structures
and also for inheritance and any custom functionality you want to add.

Blade’s syntax is clean and concise, so at its core it’s just more pleasant and tidy to
work with than the alternatives. But the moment you need anything of any complex-
ity in your templates—nested inheritance, complex conditionals, or recursion—Blade
starts to really shine. Just like the best Laravel components, it takes complex applica-
tion requirements and makes them easy and accessible.

55

Additionally, since all Blade syntax is compiled into normal PHP code and then
cached, it’s fast and it allows you to use native PHP in your Blade files if you want.
However, I'd recommmend avoiding usage of PHP if at all possible—usually if you
need to do anything that you can’t do with Blade or a custom Blade directive, it
doesn’t belong in the template.

Using Twig with Laravel

Unlike many other Symfony-based frameworks, Laravel doesn’t use
Twig by default. But if you're just in love with Twig, there’s a Twig
Bridge package that makes it easy to use Twig instead of Blade.

Echoing Data

As you can see in Example 4-1, {{ and }} are used to wrap sections of PHP that youd
like to echo. {{ $variable }} is similar to <?= Svariable ?> in plain PHP.

Its different in one way, however, and you mightve guessed this already: Blade
escapes all echoes by default using PHP’s htmlentities() to protect your users from
malicious script insertion. That means {{ Svariable }} is functionally equivalent to
<?= htmlentities(Svariable) ?>. If you want to echo without the escaping, use {!!
and !!} instead.

{{and }} When Using a Frontend Templating Framework

You might've noticed that the echo syntax for Blade ({{ }}) is similar to the echo syn-
tax for many frontend frameworks. So, how does Laravel know when you’re writing
Blade versus Handlebars?

Blade will ignore any {{ thats prefaced with an @. So, it will parse the first of the fol-
lowing examples, but the second will be echoed out directly:

// Parsed as Blade; the value of $bladeVariable is echoed to the view
{{ Sbladevariable }}

// @ is removed, and "{{ handlebarsVariable }}" echoed to the view directly
@{{ handlebarsvariable }}

56 | Chapter4:Blade Templating

https://github.com/rcrowe/TwigBridge
https://github.com/rcrowe/TwigBridge

Control Structures

Most of the control structures in Blade will be very familiar. Many directly echo the
name and structure of the same tag in PHP.

There are a few convenience helpers, but in general, the control structures just look
cleaner than they would in PHP.

Conditionals

First, let’s take a look at the control structures that allow for logic.

@if

Blade’s @if (Scondition) compilesto <?php if (Scondition): ?>.@else, @elseif,
and @endif also compile to the exact same syntax in PHP. Take a look at Example 4-2
for some examples.

Example 4-2. @if, @else, @elseif, and @endif

@if (count(Stalks) === 1)
There is one talk at this time period.
@elseif (count($talks) === 0)
There are no talks at this time period.
@else
There are {{ count($talks) }} talks at this time period.
@endif

Just like with the native PHP conditionals, you can mix and match these how you
want. They don’t have any special logic; there’s literally a parser looking for something
with the shape of @if (Scondition) and replacing it with the appropriate PHP code.

@unless and @endunless

@unless, on the other hand, is a new syntax that doesn’t have a direct equivalent in
PHP. It’s the direct inverse of @if. Qunless (Scondition) is the same as <?php if (!
Scondition). See it in use in Example 4-3.

Example 4-3. @unless and @endunless
@Qunless (Suser->hasPaid())

You can complete your payment by switching to the payment tab.
@endunless

Control Structures | 57

Loops

Next, let’s take a look at the loops.

@for, @foreach, and @while

@for, @foreach, and @while work the same in Blade as they do in PHP; see Examples
4-4,4-5, and 4-6.

Example 4-4. @for and @endfor

@for ($1 = 0; $1 < $talk->slotsCount(); $i++)
The number is {{ $i }}

@endfor

Example 4-5. @foreach and @endforeach

@foreach (Stalks as $talk)
o {{ Stalk->title }} ({{ $talk->length }} minutes)

@endforeach

Example 4-6. @while and @endwhile

@while ($item = array_pop($items))
{{ $item->orSomething() }}

@endwhile

@forelse

@forelse is a @foreach that also allows you to program in a fallback if the object
youre iterating over is empty. We saw it in action at the start of this chapter;
Example 4-7 shows another example.

Example 4-7. @forelse

@forelse (Stalks as S$talk)

o {{ Stalk->title }} ({{ $talk->length }} minutes)

@empty

No talks this day.
@endforelse

58 | Chapter4:Blade Templating

$loop Within @foreach and @forelse

The @foreach and @forelse directives in Laravel 5.3 add one

feature that’s not available in PHP foreach loops: the $loop
variable. Used within a @foreach or @forelse loop, this variable
will return a stdClass object with the following properties:

index
The 0-based index of the current item in the loop; @ would mean “first item”

iteration
The 1-based index of the current item in the loop; 1 would mean “first item”

remaining
How many items remain in the loop; if the current item is the first of three, this
will be 2

count
The count of items in the loop

first
A boolean indicating whether this is the first item in the loop

last
A boolean indicating whether this is the last item in the loop

depth
How many “levels” deep this loop is: 1 for a loop, 2 for a loop within a loop, etc.

parent
A reference to the $loop variable for the parent loop item; if this loop is within
another @foreach loop otherwise, null

Here’s an example of how to use it:

@foreach ($pages as S$page)
{{ $loop->iteration }}: {{ $page->title }}
@if (Spage->hasChildren())

@foreach ($page->children() as $child)
{{ $loop->parent->iteration }}.
{{ $loop->iteration }}:
{{ $child->title }}</1i>
@endforeach

@endif
</1i>
@endforeach

Control Structures

59

or

If youre ever unsure whether a variable is set, youre probably used to checking
isset() on it before echoing it, and echoing something else if it’s not set. Blade has a
convenience helper, or, that does this for you and lets you set a default fallback:
{{ $title or "Default" }} will echo the value of $title if it’s set, or “Default”
if not.

Template Inheritance

Blade provides a structure for template inheritance that allows views to extend, mod-
ity, and include other views.

Here’s how inheritance is structured with Blade.

Defining Sections with @section/@show and @yield

Let’s start with a top-level Blade layout, like in Example 4-8. This is the definition of
the generic page wrapper that we'll later place page-specific content into.

Example 4-8. Blade layout

<!-- resources/views/layouts/master.blade.php -->
<html>
<head>
<title>My Site | @yield('title', 'Home Page')</title>
</head>
<body>

<div class="container"s
@yield('content')

</div>

@section('footerScripts')
<script src="app.js"></script>

@show

</body>
</html>

This looks a bit like a normal HTML page, but you can see we've yielded in two places
(title and content), and we've defined a section in a third (footerScripts).

We have three Blade directives here that each look a little different: @yield('title"',
'"Home Page') alone, @yield('content') with a defined default, and @section ...
@show with actual content in it.

All three function essentially the same. All three are defining that there’s a section with
a given name (which is the first parameter). All three are defining that the section can
be extended later. And all three are defining what to do if the section isn't extended,

60 | Chapter4:Blade Templating

either by providing a string fallback ('Home Page'), no fallback (which will just not
show anything if it's not extended), or an entire block fallback (in this case, <script
src="app.js"></script>).

What'’s different? Well, clearly, @yield('content') has no default content. But addi-
tionally, the default content in @yield('title') only will be shown if it's never exten-
ded. If it is extended, its child sections will not have programmatic access to the
default value. @section ... @show, on the other hand, is both defining a default
and doing so in a way that its default contents will be available to its children, through
@parent.

Once you have a parent layout like this, you can extend it like in Example 4-9.

Example 4-9. Extending a Blade layout

<!-- resources/views/dashboard.blade.php -->
@extends('layouts.master')

@section('title', 'Dashboard')
@section('content')
Welcome to your application dashboard!

@endsection

@section('footerScripts')
@parent

<script src="dashboard.js"></script>
@endsection

@show versus @endsection

You may have noticed that Example 4-8 uses @section ... @show,
but Example 4-9 uses @section ... @endsection. What’s the dif-
ference?

Use @show when you're defining the place for a section, in the par-
ent template. Use @endsection when youre defining the content
for a template in a child template.

This child view will actually allow us to cover a few new concepts in Blade inheri-
tance.

@extends

First, with @extends('layouts.master'), we define that this view should not be ren-
dered on its own, but that it instead extends another view. That means its role is to
define the content of various sections, but not to stand alone. It’s almost more like a

Template Inheritance | 61

series of buckets of content, rather than an HTML page. This line also defines that the
view it’s extending lives at resources/views/layouts/master.blade.php.

Each file should only extend one other file, and the @extends call should be the first
line of the file.

@section and @endsection

Second, with @section('title', 'Dashboard'), we provide our content for the
first section, title. Since the content is so short, instead of using @section and @end
section we're just using a shortcut. This allows us to pass the content in as the sec-
ond parameter of @section and then move on. If its a bit disconcerting to see
@section without @endsection, you could just use the normal syntax.

Third, with @section('content') and on, we use the normal syntax to define
the contents of the content section. We'll just throw a little greeting in for now. Note,
however, that when youre using @section in a child view, you end it with @endsec
tion (or its alias @stop), instead of @show, which is reserved for defining sections in
parent views.

@parent

Fourth, with @section('footerScripts') and on, we use the normal syntax to
define the contents of the footerScripts section.

But remember, we actually defined that content (or, at least, its “default”) already in
the master layout. So this time, we have two options: we can either overwrite the con-
tent from the parent view, or we can add to it.

You can see that we have the option to include the content from the parent by using
the @parent directive within the section. If we didn’t, the content of this section
would entirely overwrite anything defined in the parent for this section.

@include

Now that we've established the basics of inheritance, there are a few more tricks we
can perform.

What if we're in a view and want to pull in another view? Maybe we have a call-to-
action “Sign up” button that we want to re-use around the site. And maybe we want
to customize its button text every time we use it. Take a look at Example 4-10.

62 | Chapter4:Blade Templating

Example 4-10. Including view partials with @include

<!-- resources/views/home.blade.php -->
<div class="content" data-page-name="{{ $pageName }}">
<p>Here's why you should sign up for our app: It's Great.</p>

@include('sign-up-button', ['text' => 'See just how great it is'])
</div>

<!-- resources/views/sign-up-button.blade.php -->

<i class="exclamation-icon"></i> {{ $text }}

@include pulls in the partial and, optionally, passes data into it. Note that not only
can you explicitly pass data to an include via the second parameter of @include, but
you can also reference any variables within the included file that are available to the
including view ($pageName, in this example). Once again, you can do whatever you
want, but I would recommend you consider always explicitly passing every variable
that you intend to use, just for clarity.

@each

You can probably imagine some circumstances in which youd need to loop over
an array or collection and @include a partial for each item. There’s a directive for
that: @each.

Lets say we have a sidebar composed of modules, and we want to include multiple
modules, each with a different title. Take a look at Example 4-11.

Example 4-11. Using view partials in a loop with @each

<!-- resources/views/sidebar.blade.php -->
<div class="sidebar">

@each('partials.module', Smodules, 'module', 'partials.empty-module')
</div>

<!-- resources/views/partials/module.blade.php -->
<div class="sidebar-module">

<h1>{{ Smodule->title }}</h1>
</div>

<!-- resources/views/partials/empty-module.blade.php -->
<div class="sidebar-module">

No modules :(
</div>

Template Inheritance | 63

Consider that @each syntax. The first parameter is the name of the view partial. The
second is the array or collection to iterate over. The third is the variable name that
each item (in this case, each element in the $modules array) will be passed to the view
as. And the optional fourth parameter is the view to show if the array or collection is
empty (or, optionally, you can pass a string in here that will be used as your template).

View Composers and Service Injection

As we covered in Chapter 3, it’s simple to pass data to our views from the route defi-
nition (see Example 4-12).

Example 4-12. Reminder on how to pass data to views

Route::get('passing-data-to-views', function () {
return view('dashboard')
->with('key', 'value');
b

There are times, however, when you will find yourself passing the same data over and
over to multiple views. Or, you might find yourself using a header partial or some-
thing similar that requires some data; will you now have to pass that data in from
every route definition that might ever load that header partial?

Binding Data to Views Using View Composers

Thankfully, there’s a simpler way. The solution is called a view composer, and it allows
you to define that any time a particular view loads, it should have certain data passed
to it—without the route definition having to pass that data in explicitly.

Lets say you have a sidebar on every page, which is defined in a partial named
partials.sidebar (resources/views/partials/sidebar.blade.php) and then included on
every page. This sidebar shows a list of the last seven posts that were published on
your site. If it’s on every page, every route definition would normally have to grab
that list and pass it in, like in Example 4-13.

Example 4-13. Passing sidebar data in from every route

Route::get('home', function () {
return view('home')
->with('posts', Post::recent());

s

Route::get('about', function () {
return view('about')
->with('posts', Post::recent());

s

64 | Chapter4:Blade Templating

That could get annoying quickly. Instead, were going to use view composers to
“share” that variable with a prescribed set of views. We can do this a few ways, so let’s
start simple and move up.

Sharing a variable globally

First, the simplest option: just globally “share” a variable with every view in your
application like in Example 4-14.

Example 4-14. Sharing a variable globally

// Some service provider
public function boot()
{

view()->share('posts', Post::recent());

}

If you want to use view()->share(), the best place would be the boot() method of a
service provider so that the binding runs on every page load. You can create a custom
ViewComposerServiceProvider (see Chapter 11 for more about service providers),
but for now just put it in App\Providers\AppServiceProvider in the boot()
method.

Using view()->share() makes the variable accessible to every view in the entire
application, however, so it might be overkill.

Closure-based view composers

The next option is to use a closure-based view composer to share variables with a sin-
gle view, like in Example 4-15.

Example 4-15. Creating a closure-based view composer

view()->composer('partials.sidebar', function (Sview) {
Sview->with('posts', Post::recent());

s

As you can see, we've defined the name of the view we want it shared with in the first
parameter (partials.sidebar) and then passed a closure to the second parameter; in
the closure, we've used Sview->with() to share a variable, but now only with a spe-
cific view.

View Composers and Service Injection | 65

View composers for multiple views

Anywhere a view composer is binding to a particular view (like in
Example 4-15, which binds to partials.sidebar), you can pass an
array of view names instead to bind to multiple views.

You can also use an asterisk in the view path, as in partials.*,
tasks.*, or just *:

view()->composer(
['partials.header', 'partials.footer'],
function () {
Sview->with('posts', Post::recent());
}
);

view()->composer('partials.*', function () {
Sview->with('posts', Post::recent());

s

(lass-based view composers

Finally, the most flexible but also most complex option is to create a dedicated class
for your view composer.

First, let’s create the view composer class. There’s no formally defined place for view
composers to live, but the docs recommend App\Http\ViewComposers. So, let’s create
App\Http\ViewComposers\RecentPostsComposer like in Example 4-16.

Example 4-16. A view composer

<?php

namespace App\Http\ViewComposers;

use App\Post;
use Illuminate\Contracts\View\View;

class RecentPostsComposer
{

private $posts;

public function

{
}

_construct(Post $posts)

Sthis->posts = $posts;

public function compose(View $view)

{

Sview->with('posts', S$this->posts->recent());

66 | Chapter4:Blade Templating

}

As you can see, were injecting the Post model (typehinted constructor parameters of
view composers will be automatically injected; see Chapter 11 for more on the con-
tainer and dependency injection). Note that we could skip the private $posts and
the constructor injection and just use Post: :recent() in the compose() method if we
wanted. Then, when this composer is called, it runs the compose() method, in which
we bind the posts variable to the result of running the recent() method.

Like the other methods of sharing variables, this view composer needs to have a bind-
ing somewhere. Again, youd likely create a custom ViewComposerServiceProvider,
but for now, as seen in Example 4-17, we'll just put it in the boot() method of App
\Providers\AppServiceProvider.

Example 4-17. Registering a view composer in AppServiceProvider

// AppServiceProvider
public function boot()

{
view()->composer(
'partials.sidebar’',
\App\Http\ViewComposers\RecentPostsComposer::class
)
}

Note that this binding is the same as a closure-based view composer, but instead of
passing a closure, we're passing the class name of our view composer. Now, every time
Blade renders the partials.sidebar view, it'll automatically run our provider and
pass the view a posts variable set to the results of the recent() method on our Post
model.

Blade Service Injection

There are three primary types of data were most likely to inject into a view: collec-
tions of data to iterate over, single objects that we’re displaying on the page, and serv-
ices that generate data or views.

With a service, the pattern will most likely look like Example 4-18, where we inject an
instance of our analytics service into the route definition by typehinting it in the
route’s method signature, and then pass it into the view.

View Composers and Service Injection | 67

Example 4-18. Injecting services into a view via the route definition constructor

Route::get('backend/sales', function (AnalyticsService S$Sanalytics) {
return view('backend.sales-graphs')
->with('analytics', $analytics);

s

Just as with view composers, Blade’s service injection offers a convenient shortcut to
reduce duplication in your route definitions. Normally, the content of a view using
our analytics service might look like Example 4-19.

Example 4-19. Using an injected navigation service in a view

<div class="finances-display">
{{ Sanalytics->getBalance() }} / {{ S$analytics->getBudget() }}
</div>

Blade service injection makes it easy to inject an instance of a class outside of the con-
tainer directly from the view, like in Example 4-20.

Example 4-20. Injecting a service directly into a view
@inject('analytics', 'App\Services\Analytics')

<div class="finances-display">
{{ Sanalytics->getBalance() }} / {{ S$analytics->getBudget() }}
</div>

As you can see, this @inject directive has actually made an $analytics variable
available, which were using later in our view.

The first parameter of @ilnject is the name of the variable youre injecting, and
the second parameter is the class or interface that you want to inject an instance of.
This is resolved just like when you type hint a dependency in a constructor elsewhere
in Laravel; if you're unfamiliar with how that works, go to Chapter 11 to learn more.

Just like view composers, Blade service injection makes it easy to make certain data or
functionality available to every instance of a view, without having to inject it via the
route definition every time.

Custom Blade Directives

All of the built-in syntax of Blade that we've covered so far—@if, @unless, and so
on—are called directives. Each Blade directive is a mapping between a pattern (e.g.,
@if (Scondition)) and a PHP output (e.g., <?php if (Scondition): ?>).

68 | Chapter4:Blade Templating

Directives aren’t just for the core; you can actually create your own. You might think
directives are good for making little shortcuts to bigger pieces of code—for example,
using @button('buttonName') and having it expand to a larger set of button HTML.
This isn’t a terrible idea, but for simple code expansion like this you might be better
off including a view partial.

I've found custom directives to be the most useful when they simplify some form
of repeated logic. Say we're tired of having to wrap our code with @if (auth()-
>guest()) (to check if a user is logged in or not) and we want a custom @ifGuest
directive. As with view composers, it might be worth having a custom service
provider to register these, but for now let’s just put it in the boot() method of App
\Providers\AppServiceProvider. Take a look at Example 4-21 to see what this bind-
ing will look like.

Example 4-21. Binding a custom Blade directive

// AppServiceProvider
public function boot()
{
Blade: :directive('ifGuest', function () {
return "<?php if (auth()->guest()): ?>";
b
}

We've now registered a custom directive, @LfGuest, which will be replaced with the
PHP code <?php if (auth()->guest()): ?>.

This might feel strange. You're writing a string that will be returned and then executed
as PHP. But what this means is that you can now take the complex, or ugly, or unclear,
or repetitive aspects of your PHP templating code and hide them behind clear, sim-
ple, and expressive syntax.

Custom directive result caching

You might be tempted to do some logic to make your custom direc-
tive faster by performing an operation in the binding and then
embedding the result within the returned string:

Blade: :directive('ifGuest', function () {
// Antipattern! Do not copy.
$ifGuest = auth()->guest();
return "<?php if ({$ifGuest}): 7>";
s
The problem with this idea is that it assumes this directive will be
re-created on every page load. However, Blade caches aggressively,
so you're going to find yourself in a bad spot if you try this.

Custom Blade Directives | 69

Parameters in Custom Blade Directives

What if you want to check a condition in your custom logic? Check out
Example 4-22.

Example 4-22. Creating a Blade directive with parameters

// Binding
Blade: :directive('newlinesToBr', function (Sexpression) {
return "<?php echo nl2br({$expression}); ?>";

s

// In use
<p>@newlinesToBr($message->body)</p>

The Sexpression parameter received by the closure represents whatever’s within the
parentheses. As you can see, we then generate a valid PHP code snippet and return it.

$Sexpression parameter scoping before Laravel 5.3

E Before Laravel 5.3, the $expression parameter also included

the parentheses themselves. So, in Example 4-22, $Sexpression
(which is $message->body in Laravel 5.3 and later) would have
instead been ($message->body), and we would’ve had to write <?
php echo nl2br{Sexpression}; ?>.

If you find yourself constantly writing the same conditional logic over and over, you
should consider a Blade directive.

Example: Using Custom Blade Directives for a Multitenant App

So, let’s imagine we’re building an application that supports multitenancy, which
means users might be visiting the site from www.myapp.com, clientl.myapp.com, cli-
ent2.myapp.com, or elsewhere.

Suppose we have written a class to encapsulate some of our multitenancy logic and
named it Context. This class will capture information and logic about the context of
the current visit, such as who the authenticated user is and whether the user is visiting
the public website or a client subdomain.

We'll probably frequently resolve that Context class in our views and perform condi-
tionals on it, like in Example 4-23. The app('context') is a shortcut to get an
instance of a class from the container, which we’ll learn more about in Chapter 11.

70 | Chapter4:Blade Templating

Example 4-23. Conditionals on context without a custom Blade directive

@if (app('context')->isPublic())

© Copyright MyApp LLC
@else

© Copyright {{ app('context')->client->name }}
@endif

What if we could simplify @if (app('context')->isPublic()) to just @iLfPublic?
Let’s do it. Check out Example 4-24.

Example 4-24. Conditionals on context with a custom Blade directive

// Binding
Blade: :directive('ifPublic', function () {

return "<?php if (app('context')->isPublic()): ?>";
s

// In use
@ifPublic
© Copyright MyApp LLC
@else
© Copyright {{ app('context')->client->name }}
@endif

Since this resolves to a simple if statement, we can still rely on the native @else and
@endif conditionals. But if we wanted, we could also create a custom @elseIfClient
directive, or a separate @LfClient directive, or really whatever else we want.

Testing

The most common method of testing views is through application testing, meaning
that you're actually calling the route that displays the views and ensuring the views
have certain content (see Example 4-25). You can also click buttons or submit forms
and ensure that you are redirected to a certain page, or that you see a certain error.
(You'll learn more about testing in Chapter 12.)

Example 4-25. Testing that a view displays certain content

// EventsTest.php
public function test_list_page_shows_all_events()
{
Seventl = factory(Event::class)->create();
Sevent2 = factory(Event::class)->create();

Sthis->visit('events')
->see($Seventl->title)

Testing | 71

->see($Sevent2->title);

}

You can also test that a certain view has been passed a particular set of data, which, if
it accomplishes your testing goals, is less fragile than checking for certain text on the
page. Example 4-26 demonstrates this approach.

Example 4-26. Testing that a view was passed certain content

// EventsTest.php
public function test_list_page_shows_all_events()

{
Seventl = factory(Event::class)->create();
Sevent2 = factory(Event::class)->create();
Sthis->visit('events');
S$this->assertViewHas('events', Event::all());
Sthis->assertViewHasAll([
'events' => Event::all(),
'title' => 'Events Page'
s
$this->assertViewMissing('dogs');
}

e In 5.3, we gained the ability to pass a closure to $assertViewHas(), meaning we can
customize how we want to check more complex data structures. Example 4-27 illus-
trates how we might use this.

Example 4-27. Passing a closure to assertViewHas()

// EventsTest.php
public function test_list_page_shows_all_events()

{
Seventl = factory(Event::class)->create();
Sthis->visit('events/' . Seventl->id);
Sthis->assertViewHas('event', function ($event) use (Seventl) {
return $event->id === $eventl->id;
s
}

TL;DR

Blade is Laravel’s templating engine. Its primary focus is a clear, concise, and expres-
sive syntax with powerful inheritance and extensibility. Its “safe echo” brackets are

72 | Chapter4:Blade Templating

{{ and }}, its unprotected echo brackets are {!! and ! !}, and it has a series of custom
tags called directives that all begin with @ (@if and @unless, for example).

You can define a parent template and leave “holes” in it for content using @yield
and @section/@show. You can then teach its child views to extend it using
@extends('parent.view.name'), and define their sections using @section/@endsec
tion. You use @parent to reference the content of the block’s parent.

View composers make it easy to define that, every time a particular view or subview
loads, it should have certain information available to it. And service injection allows
the view itself to request data straight from the application container.

TR | 73

CHAPTER 5
Frontend Components

Laravel is primarily a PHP framework, but it also has a series of components focused
on generating frontend code. Some of these, like pagination and message bags, are
PHP helpers that target the frontend, but Laravel also provides a Gulp-based build
system called Elixir and some conventions around non-PHP assets.

Since Elixir is at the core of the non-PHP frontend components, let’s start there.
Elixir

Elixir (not to be confused with the functional programming language) is a build tool
that provides a simple user interface and a series of conventions on top of

Gulp. Elixir’s core feature is simplifying the most common Gulp tasks by means of a
cleaner API and a series of naming and application structure conventions.

A Quick Introduction to Gulp

Gulp is a JavaScript tool designed for compiling static assets and coordinating other
steps of your build process.

Gulp is similar to Grunt, Rake, or make—it allows you to define an action (called a
“task” in Gulp) or series of actions to take every time you build your application. This
will commonly include running a CSS preprocessor like Sass or LESS, copying files,
concatenating and minifying JavaScript, and much more.

Gulp, and therefore Elixir, is based on the idea of streams. Most tasks will begin by
loading some files into the stream buffer, and then the task will apply transformations
to the content—preprocess it, minify it, and then maybe save the content to a new file.

75

http://gulpjs.com

At its core, Elixir is just a tool in your Gulp toolbox. There isn’t even such a thing as
an Elixir file; you’ll define your Elixir tasks in your gulpfile.js. But they look a lot dif-
ferent from vanilla Gulp tasks, and you’ll have to do a lot less work to get them run-
ning out of the box.

Lets look at a common example: running Sass to preprocess your CSS styles. In a
normal Gulp environment, that might look a little bit like Example 5-1.

Example 5-1. Compiling a Sass file in Gulp

var gulp = require('qgulp'),
sass = require('qgulp-ruby-sass'),
autoprefixer = require('gulp-autoprefixer'),
rename = require('gulp-rename'),
notify = require('gulp-notify'),
livereload = require('gulp-livereload'),
1r = require('tiny-1r'),
server = 1r();

gulp.task('sass', function() {
return gulp.src('resources/assets/sass/app.scss')
.pipe(sass({
style: 'compressed',
sourcemap: true
1))
.pipe(autoprefixer('last 2 version', 'ie 9', 'ios 6"))
.pipe(gulp.dest('public/css'))
.pipe(rename({suffix: '.min'}))
.pipe(livereload(server))
.pipe(notify({
title: "Karani",
message: "Styles task complete."
s
s

Now, I've seen worse. It reads well, and it’s clear what’s going on. But there’s a lot
happening that you’ll just pull into every site you ever make. It can get confusing and
repetitive.

Let’s try that same task in Elixir (Example 5-2).

Example 5-2. Compiling a Sass file in Elixir
var elixir = require('laravel-elixir');
elixir(function (mix) {

mix.sass('app.scss');

s

76 | Chapter5: Frontend Components

That’s it. That covers all the basics—preprocessing, notification, folder structure,
autoprefixing, and much more.

ES6 in Elixir 6

E Elixir 6, which came out with Laravel 5.3, changed a lot of the
syntax to use ES6, the latest version of JavaScript. Here’s what
Example 5-2 looks like in Elixir 6:

const elixir = require('laravel-elixir');

elixir(mix => {
mix.sass('app.scss')

s

Don’t worry; this does exactly the same thing.

Elixir Folder Structure

Much of Elixir’s simplicity comes from the assumed directory structure. Why make
the decision fresh in every new application about where the source and compiled
assets live? Just stick with Elixir’s convention, and you won't have to think about it
ever again.

Every new Laravel app comes with a resources folder with an assets subfolder, which is
where Elixir will expect your frontend assets to live. Your Sass will live in resources/
assets/sass, or your LESS in resources/assets/less, and your JavaScript will live in resour-
ces/assets/js. These will export to public/css and public/js.

But if you're interested in changing the structure, you can always change the source
and public paths by changing the appropriate properties (assetsPath and public
Path) on the elixir.config object.

Running Elixir

Since Elixir runs on Gulp, you’ll need to set up a few tools before using it:

1. First, you'll need Node.js installed. Visit the Node website to learn how to get it
running.

2. Next, you'll need to install Gulp globally on your machine. Just run npm install
--global gulp-cli from the terminal anywhere on your machine.

Once Node and Gulp are installed, you will never have to run those commands
again. Now you're ready to install this project’s dependencies.

Elixir | 77

http://nodejs.org/

3. Open the project root in your terminal, and run npm install to install
the required packages (Laravel ships with an Elixir-ready package.json file to
direct NPM).

You're now set up! You can run gulp to run Gulp/Elixir once, gulp watch to listen for
relevant file changes and run in response, or gulp scripts or gulp styles to just
run the script or style tasks.

What Does Elixir Provide?

We've already covered that Elixir can preprocess your CSS using Sass or LESS. It can
concatenate files, minify them, rename them, and copy them, and it can copy entire
directories or individual files.

Elixir can also process ES6/ES2015 JavaScript and run Webpack, Rollup, and/or
Autoprefixer on your code. Not only that, but most of the modern coding standards
for JavaScript and CSS are covered on every script or style, out of the box.

Elixir can also run your tests. There’s a method for PHPUnit and one for PHPSpec;
both listen to changes to your test files and rerun your test suite every time you make
any changes.

The Elixir documentation covers all of these options and more, but we'll cover a few
specific use cases in the following sections.

The --production flag

By default, Elixir doesn’t minify all the files it’s generating. But if you want to run the
build scripts in “production” mode, with all minification enabled, you can just add
the - -production flag:

$ gulp --production

Passing multiple files

Most of the Elixir methods that normally accept a single file (e.g.,
mix.sass('app.scss')) can also take an array of files, like in Example 5-3.

Example 5-3. Compiling multiple files with Elixir
const elixir = require('laravel-elixir');

elixir(mix => {
mix.sass([
'app.scss',
'public.scss'
D;
s

78 | Chapter5: Frontend Components

https://laravel.com/docs/elixir

Source maps

By default, Elixir generates source maps for your files—you’ll see them as a .{file-
namef.map file next to each generated file.

If youre not familiar with source maps, they work with any sort of preprocessor
to teach your browser’s web inspector which files generated the compiled source
you’re inspecting.

Without source maps, if you use your browser’s development tools to inspect a partic-
ular CSS rule or JavaScript action, you'll just see a big mess of compiled code. With
source maps, your browser can pinpoint the exact line of the source file, whether it be
Sass or JavaScript or whatever else, that generated the rule you're inspecting.

If you don’t want source maps, you can always change the configuration before your
elixir block like in Example 5-4.

Example 5-4. Disabling source maps in Elixir
const elixir = require('laravel-elixir');
elixir.config.sourcemaps = false;

elixir(mix => {
mix.sass('app.scss');

s

Preprocessorless (SS

If you don’t want to deal with a preprocessor, there’s a command for that—it will grab
all of your CSS files, concatenate them, and output them to the public/css directory,
just as if they had been run through a preprocessor. If you don't specify an ouput file
name, itll end up in all.css. There are a few options, which you can see in
Example 5-5.

Example 5-5. Combining stylesheets with Elixir
const elixir = require('laravel-elixir');

elixir(mix => {
// Combines all files from resources/assets/css and subfolders
mix.styles();

// Combines files from resources/assets/css
mix.styles([

'normalize.css’',

'app.css'

D;

Elixir | 79

s

// Combines all styles from other directory
mix.stylesIn('resources/some/other/css/directory');

// Combines given styles from resources/assets/css
// and outputs to a custom directory
mix.styles([
'normalize.css’',
'app.css'
1, 'public/other/css/output.css');

// Combines given styles from custom directory
// and outputs to a custom directory
mix.styles([
'normalize.css’',
'app.css’
1, 'public/other/css/output.css', 'resources/some/other/css/directory');

Concatenating JavaScript

The options available for working with normal JavaScript files are very similar to
those available for normal CSS files. Take a look at Example 5-6. Like with styles(),
any commands not provided with an output filename will output to public/js/all js.

Example 5-6. Combining JavaScript files with Elixir

const elixir = require('laravel-elixir');

elixir(mix => {

// Combines files from resources/assets/js
mix.scripts([

'jquery.js',

'app.js'
D;

// Combines all scripts from other directory
mix.scriptsIn('resources/some/other/js/directory');

// Combines given scripts from resources/assets/js
// and outputs to a custom directory
mix.scripts([
"jquery.js’,
'app.js'
1, 'public/other/js/output.js');

// Combines given scripts from custom directory
// and outputs to a custom directory
mix.scripts([

'jquery.js',

'app.js'

80

| Chapter 5: Frontend Components

1, 'public/other/js/output.js', 'resources/some/other/js/directory');

s

Processing JavaScript

If you want to process your JavaScript—for example, to compile your ES6 code into
plain JavaScript—Elixir makes it easy to use either Webpack or Rollup for this pur-
pose (see Example 5-7).

Example 5-7. Processing JavaScript files in Elixir with Webpack or Rollup

elixir(function(mix) {
mix.webpack('app.js');

// or

mix.rollup('app.js');
s

These scripts look for the provided filename in resources/assets/js and output to
public/js/all.js.

You can use more complicated aspects of Webpack’s feature set by creating a
webpack.config.js file in your project root.

Compiling JavaScript in Elixir 5

E Prior to Laravel 5.3/Elixir 6, you’ll want to compile your Java-
Script using mix.browserify('app.js').

Versioning

Most of the tips from Steve Souders’ Even Faster Web Sites (O’Reilly) have made their
way into our everyday development practices. We move scripts to the footer, reduce
the number of HTTP requests, and more, often without even realizing where those
ideas originated.

One of Stevess tips is still very rarely implemented, though, and that is setting a very
long cache life on assets (scripts, styles, and images). Doing this means there will be
fewer requests to your server to get the latest version of your assets. But it also means
that users are extremely likely to have a cached version of your assets, which will
make things get outdated, and therefore break, quickly.

The solution to this is versioning. Append a unique hash to each asset’s filename
every time you run your build script, and then that unique file will be cached indefi-
nitely—or at least until the next build.

Elixir | 81

Whats the problem? Well, first you need to get the unique hashes generated and
appended to your filenames. But you also will need to update your views on every
build to reference the new filenames.

As you can probably guess, Elixir handles that for you, and it’s incredibly simple.
There are two components: the versioning task in Elixir, and the elixir() PHP
helper. First, you can version your assets by running mix.version() like in
Example 5-8.
Example 5-8. mix.version
const elixir = require('laravel-elixir');
elixir(mix => {

mix.version('public/css/all.css');

s

This will generate a version of the specified file with a unique hash appended to it in
the public/build directory—something like public/build/css/all-84fa1258.css.

Next, use the PHP elixir() helper in your views to refer to that file like in
Example 5-9.

Example 5-9. Using the elixir() helper in views
<link rel="stylesheet" href="{{ elixir("css/all.css") }}">
// will output something like:

<link rel="stylesheet" href="/build/css/all-84fa1258.css">

How Does Elixir Versioning Work Behind the Scenes?

Elixir uses gulp-rev, which takes care of appending the hashes to the filenames, and
also generates a file named public/build/rev-manifest.json. This stores the information
the elixir() helper needs to find the generated file. Here’s what a sample rev-
manifest.json looks like:

{
"css/all.css": "css/all-7f592e49.css”

}

Tests

With Elixir it’s easy to run your PHPUnit or PHPSpec tests every time your test files
change.

82 | Chapter5:Frontend Components

You have two options, mix.phpUnit() and mix.phpSpec(), and each will run the
respective frameworks directly from the vendor folder, so you won’t have to do any-
thing to make them work.

If you add one of these methods to your Gulp file, however, you'll find they only run
once, even if you're using gulp watch. How do you get them to respond to changes in
your fests folder?

There’s a separate Gulp command for that: gulp tdd. This grabs just the test com-
mands out of your Gulp file, whether phpUnit() or phpSpec(), listens to the appro-
priate folder, and reruns the test suite whenever any files change.

Elixir extensions

Elixir doesn’t just provide a simple syntax for its own prebuilt tasks; it also makes it
easy to define your own.

Let’s say you want to save text to a logfile at certain points. That’s a shell command,
which is echo "message" >> file.log. Normally wed define this as a Gulp task,
using shell('echo "message" >> file.log'), like in Example 5-10.

Example 5-10. Using a Gulp task in Elixir

// Define the task
gulp.task("log", function () {
var message = "Something happened";
gulp.src("").pipe(shell('echo "' + message + '" >> file.log'));
b

elixir(mix => {
// Use the task in Elixir
mix.task('log');

// Bind the task to run every time certain files are changed
mix.task('log', 'resources/somefiles/to/watch/**/*")

s

However, if we want a little more control—for example, if we want to be able to
actually pass in the message, which is really sort of vital to make this particular task
work—we can create an Elixir extension like in Example 5-11.

Example 5-11. Creating an Elixir extension

// Either in gulpfile.js, or in an external file and required in gulpfile.js
var gulp = require("gulp"),

shell = require("gulp-shell"),

elixir = require("laravel-elixir");

Elixir | 83

elixir.extend("log", function (message) {
new Task('log', function() {
return gulp.src('').pipe(shell('echo

wa

+ message + '" >> file.log'));

b

.watch('./resources/some/files/**/*');

s

As with any component, we haven't covered everything there is to learn about Elixir,
but hopefully you've learned enough to get you running with it. Want to learn more?
Check out the docs.

Pagination

For something that is so common across web applications, pagination still can be
wildly complicated to implement. Thankfully, Laravel has a built-in concept of pagi-
nation, and it’s also hooked into Eloquent results and the router by default.

A Brief Introduction to Eloquent

We'll be covering Eloquent, database access, and Laravel’s query builder in depth in
Chapter 8, but there will be a few references between now and then that will make a
basic understanding useful.

Eloquent is Laravel’s ActiveRecord database object-relational mapper (ORM), which
makes it easy to relate a Post class (model) to the posts database table, and get all
records with a call like Post: :al1().

The query builder is the tool that makes it possible to make calls like
Post::where('active', true)->get() or even DB::table('users')->all().
You're building a query by chaining methods one after another.

Paginating Database Results

The most common place you'll see pagination is when you are displaying the results
of a database query and there are too many results for a single page. Eloquent and the
query builder both read the page query parameter from the current page request and
use it to provide a paginate() method on any result sets; the single parameter you
should pass paginate() is how many results you want per page. Take a look at
Example 5-12 to see how this works.

Example 5-12. Paginating a query builder response
// PostsController

public function index()

{

84 | Chapter5:Frontend Components

https://laravel.com/docs/elixir

return view('posts.index', ['posts' => DB::table('posts')->paginate(20)]);
}

Example 5-12 defines that this route should return 20 posts per page, and will define
which “page” of results the current user is on based on the URLs page query parame-
ter, if it has one. Eloquent models all have the same paginate() method.

When you display the results in your view, your collection will now have a links()
method on it (or render() for Laravel 5.1) that will output the pagination controls,
with bootstrap class names assigned to them by default (see Example 5-13).

Example 5-13. Rendering pagination links in a template

// posts/index.blade.php
<table>
@foreach ($Sposts as $post)
<tr><td>{{ $post->title }}</td></tr>
@endforeach
</table>

{{ S$posts->links() }}
// By defaut, Sposts->links() will output something like this:

<ul class="pagination">

<11 class="disabled">«</1i>

<11 class="active">l</1li>

2</1i>

3</1i>

»</1i>

Manually Creating Paginators

If you're not working with Eloquent or the query builder, or if youre working with a
complex query (e.g., those using groupBy), you might find yourself needing to create
a paginator manually. Thankfully, you can do that with the I1luminate\Pagination
\Paginator or I1luminate\Pagination\LengthAwarePaginator classes.

The difference between the two classes is that Paginator will only provide previous
and next buttons, but no links to each page; LengthAwarePaginator needs to know
the length of the full result, so that it can generate links for each individual page. You
may find yourself wanting to use the Paginator on large result sets, so your paginator
doesn’t have to be aware of a massive count of results that might be costly to run.

Both the Paginator and the LengthAwarePaginator require you to manually extract
the subset of content that you want to pass to the view. Take a look at Example 5-14
for an example.

Pagination | 85

Example 5-14. Manually creating a paginator in Laravel 5.2 and 5.3

use Illuminate\Http\Request;
use Illuminate\Pagination\Paginator;

Route::get('people', function (Request $request) {
Speople = [...]; // huge list of people

SperPage = 15;
SoffsetPages = $request->input('page', 1) - 1;

// The Paginator will not slice your array for you
Speople = array_slice(

$people,

SoffsetPages * $perPage,

SperPage
);

return new Paginator(
Speople,
SperPage
);
b

The Paginator syntax has changed over the last few versions of Laravel, so if youre
using 5.1, take a look at the docs to find the correct syntax.

Message Bags

Another common but painful feature in web applications is passing messages
between various components of the app, when the end goal is to share them with
the user. Your controller, for example, might want to send a validation message: “The
email field must be a valid email address” However, that particular message doesn’t
just need to make it to the view layer; it actually needs to survive a redirect and
then end up in the view layer of a different page. How do we structure this messaging
logic?

Illuminate\Support\MessageBag is a class tasked with storing, categorizing, and
returning messages that are intended for the end user. It groups all messages by key,
where the keys are likely to be something like errors and messages, and provides
convenience methods for getting all its stored messages or only those for a particular
key, and for outputting these messages in various formats.

You can spin up a new instance of MessageBag manually like in Example 5-15.

86 | Chapter5:Frontend Components

Example 5-15. Manually creating and using MessageBag

$messages = [
'errors' => [
'Something went wrong with edit 1!'
1,
'messages' => [
'"Edit 2 was successful.'
1
1;

$messagebag = new \Illuminate\Support\MessageBag($messages);

// Check for errors; if there are any, decorate and echo
if (Smessagebag->has('errors')) {

echo '<ul id="errors">';
foreach (Smessagebag->get('errors', ':message</11>') as Serror) {
echo Serror;

}
echo '';

}

Message bags are also closely connected to Laravel’s validators (learn more in “Valida-
tion” on page 103): when validators return errors, they actually return an instance of
MessageBag, which you can then pass to your view or attach to a redirect using
redirect('route')->withErrors(Smessagebag).

Laravel passes an empty instance of MessageBag to every view, assigned to the vari-
able $Serrors, and if you've flashed a message bag using withErrors() on a redirect,
it will get assigned to that $errors variable instead. That means every view can
always assume it has an $errors MessageBag it can check in whatever place it does its
validation, which leads to Example 5-16 as a common snippet developers place on
every page.

Example 5-16. Error bag snippet

// partials/errors.blade.php
@if (Serrors->any())
<div class="alert alert-danger"s>

@foreach (Serrors as $error)
{{ Serror }}</1i>
@endforeach

</div>
@endif

MessageBags | 87

Missing $errors variable

If you have any routes that aren’t under the web middleware group,
they won't have the session middleware, which means they won't
~ have this $errors variable available.

Named Error Bags

Sometimes you need to differentiate message bags not just by key (notices versus
errors) but also by component. Maybe you have a login form and a signup form on
the same page; how do you differentiate them?

When you send errors along with a redirect using withErrors(), the second parame-
ter is the name of the bag: redirect('dashboard')->withErrors($validator,
'login'). Then, on the dashboard, you can use $errors->login to call all of the
methods we saw before: any(), count(), and more.

String Helpers, Pluralization, and Localization

As developers, we tend to look at blocks of text as big placeholder divs, waiting for
the client to put real content into them. Seldom are we involved in any logic inside
these blocks.

But there are a few circumstances where you’ll be grateful for the tools Laravel pro-
vides for string manipulation.

The String Helpers and Pluralization

Laravel has a series of helpers for manipulating strings. They’re available as methods
on the Str class (e.g., Str::plural()), but most also have a global helper function
(e.g., str_plural()).

The Laravel documentation covers all of the string helpers in detail, but here are a few
of the most commonly used helpers:

e
A shortcut for html_entities

starts_with, ends_with, str_contains
Check a string (first parameter) to see if it starts with, ends with, or contains
another string (second parameter)

str_1is
Checks whether a string (second parameter) matches a particular pattern (first
parameter)—for example, foo* will match foobar and foobaz

88 | (Chapter5:Frontend Components

https://laravel.com/docs/5.3/helpers

str_slug
Converts a string to a URL-type slug with hyphens

str_plural (word, num), str_singular
Pluralizes a word or singularizes it; English-only (e.g., str_plural('dog"')
returns dogs)

Localization

Localization allows you to define multiple languages and mark any strings as targets
for translation. You can set a fallback language, and even handle pluralization varia-
tions.

In Laravel, you’ll need to set an application locale at some point during the page load
so the localization helpers know which bucket of translations to pull from. You'll do
this with App::setlLocale($localeName), and you'll likely put it in a service pro-
vider. For now you can just put it in the boot() method of AppServiceProvider, but
you may want to create a LocaleServiceProvider if you end up with more than just
this one locale-related binding.

Setting the Locale for Each Request

It can be confusing at first to work out how Laravel “knows” the user’s locale, or
provides translations. Most of that work is on you as the developer. Let’s look at a
likely scenario.

You'll probably have some functionality allowing the user to choose a locale, or possi-
bly attempting to automatically detect it. Either way, your application will determine
the locale, and then you’ll store that in a URL parameter or a session cookie. Then
your service provider—something like a LocaleServiceProvider, maybe—will grab
that key and set it as a part of Laravel’s bootstrap.

So maybe your user is at http://myapp.com/es/contacts. Your LocaleServiceProvider
will grab that es string, and then run App::setLocale('es'). Going forward, every
time you ask for a translation of a string, Laravel will look for the Spanish version of
that string, which you will need to have defined somewhere.

You can define your fallback locale in config/app.php, where you should find a fall
back_locale key. This allows you to define a default language for your application,
which Laravel will use if it can’t find a translation for the requested locale.

String Helpers, Pluralization, and Localization | 89

Basic localization

So, how do we call for a translated string? There’s a helper function, trans(s$key),
that will pull the string for the current locale for the passed key or, if it doesn't exist,
grab it from the default locale. Example 5-17 demonstrates how a basic translation
works. We'll use the example of a “back to the dashboard” link at the top of a detail

page.

Example 5-17. Basic use of trans()

// Normal PHP
<?php echo trans('navigation.back'); ?>

// Blade
{{ trans('navigation.back') }}

// Blade directive
@lang('navigation.back')

Let’s assume we are using the es locale right now. Laravel will look for a file in resour-
ces/lang/es/navigation.php, which it will expect to return an array. Il look for a back
key on that array, and if it exists, it'll return its value. Take a look at Example 5-18 for
a sample.

Example 5-18. Using a translation

// resources/lang/es/navigation.php
return [
'back' => 'Volver al panel'

1;

// routes/web.php

Route::get('/es/contacts/show/:1d', function () {
// Setting it manually, for this example, instead of in a service provider
App::setlLocale('es');
return view('contacts.show');

s

// resources/views/contacts/show.blade.php
{{ trans('navigation.back') }}

Parameters in localization

The preceding example was relatively simple. Let’s dig into some that are more com-
plex. What if we want to define which dashboard were returning to? Take a look at
Example 5-19.

90 | Chapter5:Frontend Components

Example 5-19. Parameters in translations

// resources/lang/en/navigation.php
return [
'back' => 'Back to :section dashboard'

1;

// resources/views/contacts/show.blade.php
{{ trans('navigation.back', ['section' => 'contacts']) }}

As you can see, prepending a word with a colon (:section) marks it as a placeholder
that can be replaced. The second, optional, parameter of trans() is an array of values
to replace the placeholders with.

Pluralization in localization

We already covered pluralization, so now just imagine youre defining your own plu-
ralization rules. There are two ways to do it; we'll start with the simplest, in
Example 5-20.

Example 5-20. Defining a simple translation with an option for pluralization

// resources/lang/en/messages.php
return [
'task-deletion' => 'You have deleted a task|You have successfully deleted tasks'

1;

// resources/views/dashboard.blade.php
@if (SnumTasksDeleted > 0)

{{ trans_choice('messages.task-deletion', $numTasksDeleted) }}
@endif

As you can see, we have a trans_choice() method, which takes the count of items
affected as its second parameter; and from this it will determine which string to use.

You can also use any translation definitions that are compatible with Symfony’s much
more complex Translation component; see Example 5-21 for an example.

Example 5-21. Using the Symfony’s Translation component

// resources/lang/es/messages.php
return [
'task-deletion' => "{0} You didn't manage to delete any tasks.|" .
"[1,4] You deleted a few tasks.|" .
"[5,Inf] You deleted a whole ton of tasks."
1;

String Helpers, Pluralization, and Localization | 91

Testing

In this chapter we focused primarily on Laravel’s frontend components. These are less
likely the objects of unit tests, but they may at times be used in your integration tests.

Testing with Elixir

You're not going to be writing any tests around your Elixir tasks. However, Elixir pro-
vides some functions that will help with your testing, so let’s talk about those for
a second.

If you add mix.phpunit() or mix.phpspec() to your gulpfilejs, every time you run
gulp it will run your tests once, inline, as a part of your build script.

And every time you run gulp watch, Elixir will listen to any change to your test files
or any other core files (like routes/web.php) and re-run PHPUnit or PHPSpec every
time you make any changes to those files.

Testing Message and Error Bags

There are two primary ways of testing messages passed along with message and error
bags. First, you can perform a behavior in your application tests that sets a message
that will eventually be displayed somewhere, then redirect to that page and assert that
the appropriate message is shown.

Second, for errors (which is the most common use case), you can assert the session
has errors with $this->assertSessionHasErrors($bindings = []). Take a look at
Example 5-22 to see what this might look like.

Example 5-22. Asserting the session has errors

public function test_missing_email_field_errors()

{
$this->post('person/create', ['name' => 'Japheth']);
$this->assertSessionHasErrors(['email']);

}

Translation and Localization

The simplest way to test localization is with application tests. Set the appropriate con-
text (whether by URL or session), visit() the page, and assert that you see the
appropriate content.

92 | Chapter5:Frontend Components

TL;DR

As a full-stack framework, Laravel provides tools and components for the frontend as
well as the backend.

Elixir is a wrapper around common Gulp build tasks that makes it simple to use the
most modern build steps. Elixir makes it easy to add CSS preprocessors; JavaScript
transpilation, concatenation, and minification; and much more.

Laravel also offers other internal tools that target the frontend, including pagination,
message and error bags, and localization.

DR | 93

CHAPTER 6
Collecting and Handling User Data

Websites that benefit from a framework like Laravel often don’t just serve static con-
tent. Many deal with complex and mixed data sources, and one of the most common
(and most complex) of these sources is user input in its myriad forms: URL paths,
query parameters, POST data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and fil-
tering user-provided data. We'll look at those here.

Injecting a Request Object

The most common tool for accessing user data in Laravel is injecting an instance of
the I1luminate\Http\Request object. It provides easy access to all of the ways users
can provide input to your site: POST, posted JSON, GET (query parameters), and URL
segments.

Other options for accessing request data

There’s also a request() global helper and a Request facade, both
of which expose the same methods. Each of these options exposes
the entire Illuminate Request object, but for now we're only going
to cover the methods that specifically relate to user data.

Since were planning on injecting a Request object, let’s take a quick look at how to
get the $request object we'll be calling all these methods on:
Route::post('form', function (Illuminate\Http\Request Srequest) {

// Srequest->etc()
b

95

Srequest->all()

Just like the name suggests, $request->all() gives you an array containing all of the
input the user has provided, from every source. Let’s say, for some reason, you deci-
ded to have a form POST to a URL with a query parameter—e.g., sending a POST to
http://myapp.com/post?utm=12345. Take a look at Example 6-1 to see what youd get
from $request->all(). (Note that $request->all() also contains information about
any files that were uploaded, but well cover that later in the chapter.)

Example 6-1. $request->all()

<!-- GET route form view at /get-route -->

<form method="post" action="/post-route?utm=12345">
{{ csrf_field() }}
<input type="text" name="firstName">
<input type="submit">

</form>

Route: :post('/post-route', function (Request S$request) {
var_dump(Srequest->all());
b

// Outputs:
/**
* [
* '_token' => 'CSRF token here'’,
* 'firstName' => 'value',
* 'utm' => 12345
*]
*/

Srequest->except() and Srequest->only()

$request->except() provides the same output as $request->all, but you can
choose one or more fields to exclude—for example, _token. You can pass it either a
string or an array of strings.

Example 6-2 shows what it looks like when we use $request->except() on the same
form as in Example 6-1.

Example 6-2. $request->except()

Route: :post('/post-route', function (Request S$request) {
var_dump(Srequest->except('_token'));

s

// Outputs:
/**
*[

96 | Chapter6: Collecting and Handling User Data

* 'firstName' => 'value',
* 'utm' => 12345

*]

*/

$request->only() is the inverse of $request->except(), as you can see in
Example 6-3.

Example 6-3. $request->except()

Route: :post('/post-route', function (Request S$Srequest) {
var_dump($request->only(['firstName', 'utm']));
s

// Outputs:
/**
* [
* 'firstName' => 'value',
* 'utm' => 12345
*]
*/

Srequest->has() and Srequest->exists()

With $request->has() you can detect whether a particular piece of user input is
available to you. Check out Example 6-4 for an analytics example with our utm query
string parameter from the previous examples.

Example 6-4. $request->has()

// POST route at /post-route
if (Srequest->has('utm')) {
// Do some analytics work

}

$request->exists() and $request->has() differ in that they handle empty values
differently: has() returns FALSE if the key exists and is empty; exists() returns TRUE
if the key exists, even if it’s empty.

Srequest->input()

Whereas $request->all(), $request->except(), and $request->only() operate on
the full array of input provided by the user, $request->input() allows you to get the
value of just a single field. Example 6-5 provides an example. Note that the second
parameter is the default value, so if the user hasn’'t passed in a value, you can have a
sensible (and nonbreaking) fallback.

Injecting a Request Object | 97

Example 6-5. $request->input()

Route: :post('/post-route', function (Request S$request) {
SuserName = Srequest->input('name', '(anonymous)');

s

Array Input

Laravel also provides convenience helpers for accessing data from array input. Just
use the “dot” notation to indicate the steps of digging into the array structure, like in
Example 6-6.

Example 6-6. Dot notation to access array values in user data

<!-- GET route form view at /get-route -->

<form method="post" action="/post-route">
{{ csrf_field() }}
<input type="text" name="employees[0][firstName]">
<input type="text" name="employees[0][lastName]">
<input type="text" name="employees[1][firstName]">
<input type="text" name="employees[1][lastName]">
<input type="submit">

</form>

// POST route at /post-route

Route: :post('/post-route', function (Request S$Srequest) {
$SemployeeZeroFirstName = $request->input('employees.0.firstName');
$allLastNames = Srequest->input('employees.*.lastName');
$SemployeeOne = $request->input('employees.1");

s

// If forms filled out as "Jim" "Smith" "Bob" "Jones":

// SemployeeZeroFirstName = 'Jim';

// SalllLastNames = ['Smith', 'Jones'];

// SemployeeOne = ['firstName' => 'Bob', 'lastName' => 'Jones']

JSON Input (and $Srequest->json())

So far we've covered input from query strings (GET) and form submissions (POST). But
there’s another form of user input that’s becoming more common with the advent of
JavaScript single-page apps (SPAs): the JSON request. Its essentially just a POST
request with the body set to JSON instead of a traditional form POST.

Let’s take a look at what it might look like to submit some JSON to a Laravel route,
and how to use $request->input() to pull out that data (Example 6-7).

98 | Chapter6: Collecting and Handling User Data

Example 6-7. Getting data from JSON with $request->input()

POST HTTP/1.1
Content-Type:

{
"firstName": "Joe",
"lastName": "Schmoe",
"spouse": {
"firstName": "Ji11",
"lastName":"Schmoe"
}
}

// post-route

Route: :post('post-route', function (Request $request) {
SfirstName = $Srequest->input('firstName');
SspouseFirstname = Srequest->input('spouse.firstName');

s

Since $request->input() is smart enough to pull user data from GET, POST, or JSON,
you may wonder why Laravel even offers $request->json(). There are two reasons
you might prefer $request->json(). First, you might want to just be more explicit to
other programmers on your project about where youre expecting the data to come
from. And second, if the POST doesn’t have the correct application/json headers,
$request->input() won't pick it up as JSON, but $request->json() will.

and Injecting Srequest

Illuminate\Support\facades\Request).

a shortcut to request()->input('firstName')).

Chapter 10 to learn more.

Facade Namespaces, the request() Global Helper,

Any time youre using facades inside of namespaced classes (e.g., controllers), you’ll
have to add the full facade path to the import block at the top of your file (e.g., use

Because of this, several of the facades also have a companion global helper function. If
these helper functions are run with no parameters, they expose the same syntax as the
facade (e.g., request()->has() is the same as Request::has()). They also have a
default behavior for when you pass them a parameter (e.g., request('firstName') is

With Request, we've been covering injecting an instance of the Request object, but
you could also use the Request facade or the request() global helper. Take a look at

Injecting a Request Object

99

Route Data

It might not be the first thing you think of when you imagine “user data,” but the URL
is just as much user data as anything else in this chapter.

There are three primary ways you'll get data from the URL: via the Request facade,
route parameters, and Request objects. We'll cover Request objects in more detail in
Chapter 10.

From Request

Injected Request objects (and the Request facade and the request() helper) have
several methods available to represent the state of the current page’s URL, but right
now let’s look primarily at getting information about the URL segments.

If you're not familiar with the idea of URL segments, each group of characters after
the domain is called a segment. So, http://www.myapp.com/users/15/ has two seg-
ments: users and 15.

As you can probably guess, we have two methods available to us: $request-
>segments() returns an array of all segments, and $request->segment($segmentId)
allows us to get the value of a single segment. Note that segments are returned on a
1-based index, so in the preceding example, $request->segment(1) would return
users.

Request objects, the Request facade, and the request() global helper provide quite a
few more methods to help us get data out of the URL. To learn more, check out
Chapter 10.

From Route Parameters

The other primary way we get data about the URL is from route parameters, which
are injected into the controller method or closure that is serving a current route as
shown in Example 6-8.

Example 6-8. Getting URL details from route parameters
// routes/web.php
Route::get('users/{id}', function ($id) {
// If the user visits myapp.com/users/15/, $id will equal 15
s

To learn more about routes and route binding, check out Chapter 3.

100 | Chapter 6: Collecting and Handling User Data

http://www.myapp.com/users/15/

Uploaded Files

We've talked about different ways to interact with users’ text input, but there’s also the
matter of file uploads to consider. The Request facade provides access to any uploa-
ded files using the Request::file() method, which takes the file’s input name as a
parameter and returns an instance of Symfony\Component\HttpFoundation\File
\UploadedFile.

Let’s walk through an example. First, our form, in Example 6-9.

Example 6-9. A form to upload files

<form method="post" enctype="multipart/form-data"s>
{{ csrf_field() }}
<input type="text" name="name">
<input type="file" name="profile_picture"s
<input type="submit"s>

</form>

Now, lets take a look at what we get from running S$request->all(), in
Example 6-10. Note that $request->input('profile_picture') will return null; we
need to use $request->file('profile_picture') instead.

Example 6-10. The output from submitting the form in Example 6-9

Route::post('form', function (Request S$request) {
var_dump($request->all());
s

// Output:
/[
// " _token" => "token here"

/) "name" => "asdf"
// "profile_picture" => UploadedFile {}
/71

Route: :post('form', function (Request S$request) {
if (Srequest->hasFile('profile_picture')) {
var_dump($request->file('profile_picture'));
}
s

// Output:
// UploadedFile (details)

Uploaded Files | 101

Validating a File Upload

As you can see in Example 6-10, we have access to $request->hasFile() to see
whether the user uploaded a file. We can also check whether the file upload was suc-
cessful by using isvalid() on the file itself:

if (Srequest->file('profile_picture')->isvalid()) {
//
}

Because isValid() is called on the file itself, it will error if the user didn’t upload a
file. So, to check for both, youd need to check for the file’s existence first:
if (
Srequest->hasFile('profile_picture') &&
$request->file('profile_picture')->isvValid()
) {
//

Symfony’s UploadedFile class extends PHP’s native SplFileInfo with methods
allowing you to easily inspect and manipulate the file. This list isn’t exhaustive, but it
gives you a taste of what you can do:

e guessExtension()

e getMimeType()

o store($path, S$SstorageDisk = default disk)

e storeAs(Spath, SnewName, S$SstorageDisk = default disk)
e storePublicly(Spath, SstorageDisk = default disk)

e storePubliclyAs(Spath, SnewName, S$storageDisk = default disk)
o move(Sdirectory, SnewName = null)

e getClientOriginalName()

e getClientOriginalExtension()

o getClientMimeType()

o guessClientExtension()

o getClientSize()

e getError()

e isValid()

102 | Chapter 6: Collecting and Handling User Data

As you can see, most of the methods have to do with getting information about the
uploaded file, but there’s one that you’ll likely use more than all the others: store()
(new in Laravel 5.3), which takes the file that was uploaded with the request and
stores it in a specified directory on your server. Its first parameter is the destination
directory, and the optional second parameter will be the storage disk (s3, local, etc.)
to use to store the file.

You can see a common workflow in Example 6-11.

Example 6-11. Common file upload workflow

if (Srequest->hasFile('profile_picture')) {
S$path = Srequest->profile_picture->store('profiles', 's3');
auth()->user()->profile_picture = S$path;
auth()->user()->save();

}

If you need to specify the filename, you can use storeAs() instead of store(). The
first parameter is still the path; the second is the filename, and the optional third
parameter is the storage disk to use.

Proper form encoding for file uploads

If you get null when you try to get the contents of a file from your
request, you might've forgotten to set the encoding type on your
form. Make sure to add the attribute enctype="multipart/form-
data" on your form:

<form method="post" enctype="multipart/form-data"s>

Validation

Laravel has quite a few ways you can validate incoming data. Well cover form
requests in the next section, so that leaves us with two primary options: validating
manually or using the validate() method in the controller. Let’s start with the sim-
pler, and more common, validate().

validate() in the Controller Using ValidatesRequests

Out of the box, all Laravel controllers use the ValidatesRequests trait, which pro-
vides a convenient validate() method. Let’s take a look at what it looks like in
Example 6-12.

Validation | 103

Example 6-12. Basic usage of controller validation
// routes/web.php

Route::get('recipes/create', 'RecipesController@create');
Route::post('recipes', 'RecipesController@store');

// app/Http/Controllers/RecipesController.php
<?php

namespace App\Http\Controllers;
use Illuminate\Http\Request;

class RecipesController extends Controller

{
public function create()
{
return view('recipes.create');
}
public function store(Request $request)
{
$this->validate(Srequest, [
"title' => 'required|unique:recipes|max:125"',
'body' => 'required'
s
// Recipe is valid; proceed to save it
}
}

We only have four lines of code running our validation here, but they’re doing a lot.

First, we're explicitly defining the fields we expect and applying rules (here separated
by the pipe character, |) to each individually.

Next, the validate() method checks the incoming data from the $request (which
means it can use $request->all() or Srequest->input() just like we learned about
earlier in the chapter) and determines whether or not it is valid.

If the data is valid, the validate method ends and we can move on with your con-
troller method, saving the data or whatever else.

But if the data isn’t valid, it throws a ValidationException. This contains instruc-
tions to the router about how to handle this exception. If the request is Ajax (or if it’s
requesting JSON as a response), the exception will create a JSON response containing
the validation errors. If not, the exception will return a redirect to the previous page,
together with all of the user input and the validation errors—perfect for repopulating
a failed form and showing some errors.

104 | Chapter 6: Collecting and Handling User Data

More on Laravel’s Validation Rules

In our examples here (like in the docs) we’re using the “pipe” syntax: ' fieldname' :
'rule|otherRule|anotherRule'. But you can also use the array syntax to do the
same thing: ' fieldname': ['rule', 'otherRule', 'anotherRule'].

Additionally, you can validate nested properties. This matters if you use HTMLs array
syntax, which allows you to, for example, have multiple “users” on an HTML form,
each with an associated name. Here’s how you validate that:
Sthis->validate($request, [
'user.name' => 'required',
'user.email' => 'required|email’',
s
We don’t have enough space to cover every possible validation rule here, but here are
a few of the most common rules and their functions:

Require the field
required; required_if:anotherField,equalToThisValue;
required_unless:anotherField,equalToThisValue

Field must contain certain types of character
alpha, alpha_dash, alpha_num, numeric, integer

Field must contain certain patterns
email, active_url, ip

Dates

after:date, before:date (date can be any valid string that strtotime() can
handle)

Numbers
between:min,max, min:num, max:num, size:num (size tests against length for
strings, value for integers, count for arrays, or size in KB for files)

Image dimensions
dimensions:min_width=XXX; can also use and/or combine with max_width,
min_height, max_height, width, height, and ratio

Databases
exists: tableName, unique:tableName (expects to look in the same table col-
umn as the field name; see the docs for how to customize)

Validation | 105

http://bit.ly/2eMLZDl

Manual Validation

If you are not working in a controller, or if for some other reason the previously
described flow is not a good fit, you can manually create a Validator instance and
check for success or failure like in Example 6-13.

Example 6-13. Manual validation

Route::get('recipes/create', function () {
return view('recipes.create');

s

Route::post('recipes', function (Illuminate\Http\Request $request) {
$validator = Validator::make($request->all(), [
"title' => 'required|unique:recipes|max:125"',
'body' => 'required'

D;

if (Svalidator->fails()) {
return redirect('recipes/create')
->withErrors($validator)
->withInput();
}

// Recipe is valid; proceed to save it

s

As you can see, we create an instance of a validator by passing it our input as the first
parameter and the validation rules as the second parameter. The validator exposes a
fails() method that we can check against and can be passed into the withErrors()
method of the redirect.

Displaying Validation Error Messages

We've already covered much of this in Chapter 5, but here’s a quick refresher on how
to display errors from validation.

The validate() method in controllers (and the withErrors() method on redirects
that it relies on) flashes any errors to the session. These errors are made available to
the view you're being redirected to in the $errors variable. And remember that as a
part of Laravel’s magic, that $errors variable will be available every time you load the
view, even if it’s just empty, so you don’t have to check if it exists with isset().

That means you can do something like Example 6-14 on every page.

106 | Chapter 6: Collecting and Handling User Data

Example 6-14. Echo validation errors

@if (Serrors->any())
<ul id="errors"s
@foreach (Serrors->all() as $error)
{{ Serror }}
@endforeach

@endif

Form Requests

As you build out your applications, you might start noticing some patterns in your
controller methods. There are certain patterns that are repeated—for example, input
validation, user authentication and authorization, and possible redirects. If you find
yourself wanting a structure to normalize and extract these common behaviors out of
your controller methods, you may be interested in Laravel’s form requests.

A form request is a custom request class that is intended to map to the submission of
a form, and the request takes the responsilibity for validating the request, authorizing
the user, and optionally redirecting the user upon a failed validation. Each form
request will usually, but not always, explicitly map to a single HTTP request—e.g.,
“Create Comment.”

Creating a Form Request
You can create a new form request using Artisan:
php artisan make:request CreateCommentRequest

You now have a form request object available at app/Http/Requests/CreateCommen-
tRequest.php.

Every form request class provides either one or two public methods. The first is
rules(), which needs to return an array of validation rules for this request. The sec-
ond (optional) method is authorize(); if this returns true, the user is authorized to
perform this request, and if false, the user is rejected. Take a look at Example 6-15 to
see a sample form request.

Example 6-15. Sample form request
<?php
namespace App\Http\Requests;

use App\BlogPost;
use App\Http\Requests\Request;

Form Requests | 107

class CreateCommentRequest extends Request

{
public function rules()
{
return [
'body' => 'required|max:1000'
1;
}
public function authorize()
{
SblogPostId = $this->route('blogPost');
return auth()->check() && BlogPost: :where('id', $blogPostId)
->where('user_1id', auth()->user()->id)->exists();
}
}

The rules() section of Example 6-15 is pretty self-explanatory, but lets look at
authorize() briefly.

We're grabbing the segment from the route named blogPost. That’s implying the
route definition for this route probably looks a bit like this: Route: :post('blog
Posts/{blogPost}', function () { // Do stuff }). As you can see, we named
the route parameter blogPost, which makes it accessible in our Request using
Sthis->route('parameter name').

We then look at whether the user is logged in and, if so, whether any blog posts exist
with that identifier that are owned by the currently logged-in user. We'll cover what
implications this has shortly, but the important thing to know is that returning true
means the user is authorized to perform the specified action (in this case, creating a
comment), and false means the user is not authorized.

Using a Form Request

Now that we've created a form request object, how do we use it? It’s a little bit of Lara-
vel magic. Any route (closure or controller method) that typehints a form request as
one of its parameters will benefit from the definitions of that form request.

Let’s try it out, in Example 6-16.

Example 6-16. Using a form request

Route: :post('comments', function (App\Http\Requests\CreateCommentRequest $request) {
// Store comment

s

108 | Chapter 6: Collecting and Handling User Data

You might be wondering where we call the form request, but Laravel does it for us. It
validates the user input and authorizes the request. If the input is invalid, it'll act just
like the in-controller validate() method works, redirecting the user to the previous
page with their input preserved and with the appropriate error messages passed
along. And if the user is not authorized, Laravel will return a 403 Forbidden error and
not execute the route code.

Eloquent Model Mass Assignment

Until now, we've been looking at validating at the controller level, which is absolutely
the best place to start. But you can also filter the incoming data at the model level.

Its a common pattern to pass the entirety of a form’s input directly to a database
model. In Laravel, that might look like Example 6-17.

Example 6-17. Passing the entirety of a form to an Eloquent model

Route: :post('posts', function (Request $request) {
SnewPost = Post::create(Srequest->all());
s

We're assuming here that the end user is kind and not malicious, and has kept only
the fields we want him to edit—maybe the post title or body.

But what if our end user can guess, or discern, that we have an author_1id field on
that posts table? What if he used his browser tools to add an author_1id field and set
the ID to be someone else’s ID, and the other person impersonated the other person
by creating fake blog posts attributed to her?

Eloquent has a concept called “mass assignment” that allows you to either whitelist
fields that are fillable in this way (using the model’s $fillable property) or blacklist
fields that aren’t fillable (using the model’s $guarded property). Check out Chapter 8
to learn more.

In our example, we might want to fill out the model like Example 6-18 to keep our
app safe.

Example 6-18. Guarding an Eloquent model from mischevious mass assignment
<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Post extends Model

{

Eloquent Model Mass Assignment | 109

// Disable mass assignment on the author_id field
protected $guarded = ['author_1id'];
}

By setting author_1id to guarded, we ensure that malicious users will no longer be
able to override the value of this field by manually adding it to the contents of a form
that they’re sending to our app.

Double protection using $request->only()

While it’s important to do a good job of protecting our models
from mass assignment, it’s also worth being careful on the assign-
ing end. Rather than using $request->all(), consider $request-
>only() so you can specify which fields youd like to pass into your
model:

Route: :post('posts', function (Request $request) {
SnewPost = Post::create(Srequest->only([
"title',
'"body'
IDDE
b

{{Versus {!!

Any time you display content on a web page that was created by a user, you need to
guard against malicious input, such as script injection.

Lets say you allow your users to write blog posts on your site. You probably don’t
want them to be able to inject malicious JavaScript that will run in your unsuspecting
visitors’ browsers, right? So, you'll want to escape any user input that you show on the
page to avoid this.

Thankfully, this is almost entirely covered for you. If you use Laravel’s Blade templat-
ing engine, the default “echo” syntax ({{ SstuffToEcho }}) runs the output through
htmlentities() (PHP’s best way of making user content safe to echo) automatically.
You actually have to do extra work to avoid escaping the output, by using the {!!
SstuffToEcho !!} syntax.

Testing

If you're interested in testing your interactions with user input, youre probably most
interested in simulating valid and invalid user input and ensuring that if the input is
invalid the user is redirected, and if the input is valid, it ends up in the proper place
(e.g., the database).

110 | Chapter 6: Collecting and Handling User Data

Laravel’s end-to-end application testing makes this simple. Let’s start with an invalid
route that we expect to be rejected, in Example 6-19.

Example 6-19. Testing that invalid input is rejected

public function test_input_missing_a_title_1is_rejected()

{
Sthis->post('posts', ['body' => 'This is the body of my post']);
$this->assertRedirectedTo('posts/create');
Sthis->assertSessionHasErrors();
Sthis->assertHasOldInput();

}

Here we assert that after invalid input the user is redirected, with errors and with the
old input correctly passed back. You can see we're using a few custom PHPUnit asser-
tions that Laravel adds here.

So, how do we test our route’s success? Check out Example 6-20.

Example 6-20. Testing that valid input is processed

public function test_valid_input_should_create_a_post_in_the_database()

{
S$this->post('posts', ['title' => 'Post Title', 'body' => 'This is the body']);
$this->seeInDatabase(['title' => 'Post Title']);

}

Note that, if youre testing something using the database, you’ll need to learn more
about database migrations and transactions. More on that in Chapter 12.

TL;DR

There are a lot of ways to get the same data: the Request facade, the request() global
helper, and injecting an instance of Illuminate\Http\Request. Each exposes the
ability to get all input, some input, or specific pieces of data, and files and JSON input
can have some special considerations at times.

URI path segments are also a possible source of user input, and they’re also accessible
via the request tools.

Validation can be performed manually with Validator::make(), or automatically
using the $this->validate() controller method or form requests. Each automatic
tool, upon failed validation, redirects the user to the previous page with all old input
stored and errors passed along.

DR | 111

Views and Eloquent models also need to be protected from nefarious user input. Pro-
tect Blade views using the double curly brace syntax ({{ }}), which escapes user
input, and protect models by only passing specific fields into bulk methods using
$request->only() and by defining the mass assignment rules on the model itself.

112 | Chapter 6: Collecting and Handling User Data

CHAPTER 7
Artisan and Tinker

From installation onward, modern PHP frameworks expect many interactions to take
place on the command line. Laravel provides three primary tools for command-line
interaction: Artisan, a suite of built-in command-line actions with the ability to add
more; Tinker, a REPL or interactive shell for your application; and the installer, which
we've already covered in Chapter 2.

An Introduction to Artisan

If you've been reading through this book chapter by chapter, you've already learned
how to use Artisan commands. They look something like this:

php artisan make:controller PostsController

If you look in the root folder of your application, you’ll see that artisan is actually just
a PHP file. That's why you're starting your call with php artisan; you're passing that
file into PHP to be parsed. Everything after that is just passed into Artisan as argu-
ments.

Symfony Console syntax

Artisan is actually a layer on top of the Symfony Console compo-
nent, so if youre familiar with writing Symfony Console com-
mands you should be right at home.

Since the list of Artisan commands for an application can be changed by a package or
by the specific code of the application, it’s worth checking every new application you
encounter to see what commands are available.

113

http://bit.ly/2fVqOT8
http://bit.ly/2fVqOT8

To get a list of all available Artisan commands, you can run php artisan list from
the project root (although if you just run php artisan with no parameters, it will do
the same thing).

Basic Artisan Commands

There’s not enough space here to cover all of the Artisan commands, but we'll cover
many of them. Let’s get started with the basic commands:

help provides help for a command; e.g., php artisan help commandName.

clear-compiled removes Laravel's compiled class file, which is like an internal
Laravel cache; run this as a first resort when things are going wrong and you
don’t know why.

down puts your application in “maintenance mode” in order for you to fix an
error, run migrations, or whatever else; up restores an application from mainte-
nance mode.

env displays which environment Laravel is running at the moment; it’s the equiv-
alent of echoing app() ->environment() in-app.

migrate runs all database migrations.

optimize optimizes your application for better performance by caching core
PHP classes into bootstrap/cache/compile.php.

serve spins up a PHP server at localhost:8000 (you can customize the host
and/or port with --host and - -port).

tinker brings up the Tinker REPL, which we'll cover later in this chapter.

Options

Before we cover the rest of the Artisan commands, let’s look at a few notable options
you can pass any time you run an Artisan command:

-q suppresses all output.

-v, -wv, and -vvv are the three levels of output verbosity (normal, verbose, and

debug).

--no-interaction does not ask any interactive questions, so it won't interrupt
automated processes running it.

--env allows you to define which environment the Artisan command should
operate in (e.g., local, production, etc.).

114

| Chapter7: Artisan and Tinker

« --version shows you which version of Laravel your application is running on.

You've probably guessed from looking at these options that Artisan commands are
intended to be used much like basic shell commands: you might run them manually,
but they can also function as a part of some automated process at some point.

For example, there are many automated deploy processes that might benefit from cer-
tain Artisan commands. You might want to run php artisan optimize every time
you deploy an application. Flags like -q and --no-interaction ensure that your
deploy scripts, not attended by a human being, can keep running smoothly.

The Grouped Commands

The rest of the commands available out of the box are grouped by context. We won't
cover them all here, but we'll cover each context broadly:

app
This just contains app:name, which allows you to replace every instance of the
default top-level App\ namespace with a namespace of your choosing. For exam-
ple: php artisan app:name MyApplication.

auth
All we have here is auth:clear-resets, which flushes all of the expired pass-
word reset tokens from the database.

cache
cache:clear clears the caches, and cache:table creates a database migration if
you plan to use the database cache driver.

config
config:cache caches your configuration settings for faster lookup; to clear the
cache, use config:clear.

db
db:seed seeds your database, if you have configured database seeders.

event
event:generate builds missing event and event listener files based on the defini-
tions in EventServiceProvider. We'll learn more about events in Chapter 16.

key
key:generate creates a random application encryption key in your .env file.

Basic Artisan Commands | 115

Rerunning artisan key:generate means losing encryption keys

Only run php artisan key:generate once—the first time you set
up the application in a new environment—because this key is used

" to encrypt your data; if you change it after data has been stored,
that data will all become inaccessible.

make

make:auth scaffolds out the views and corresponding routes for a landing page, a
user dashboard, and login and register pages.

All the rest of the make: actions create a single item, and have parameters that
vary accordingly. To learn more about any individual command’s parameters, use
help to read its documentation.

For example, you could run php artisan help make:migration and learn that
you can pass --create=tableNameHere to create a migration that already has
the create table syntax in the file, as shown here: php artisan make:migration
create_posts_table --create=posts.

migrate

We saw a migrate command earlier to run our migrations, but here we can run
all the other migration-related commands. Create the migrations table (to keep
track of the migrations that are executed) with migrate:install, reset your
migrations and start from scratch with migrate: reset, reset your migrations and
run them all again with migrate:refresh, roll back just one migration with
migrate:rollback, or check the status of your migrations with migrate:status.

notifications

notifications:table generates a migration that creates the table for database
notifications.

queue

We'll cover Laravel's queues in Chapter 16, but the basic idea is that you can push
jobs up into remote queues to be executed one after another by a worker. This
command group provides all the tools you need to interact with your queues, like
queue: listen to start listening to a queue, queue: table to create a migration for
database-backed queues, and queue:flush to flush all failed queue jobs. There
are quite a few more, which we'll learn about in Chapter 16.

route

If you run route:list, you'll see the definitions of every route defined in the
application, including each route’s verb(s), path, name, controller/closure action,
and middleware. You can cache the route definitions for faster lookups with
route:cache and clear your cache with route:clear.

116

| Chapter7: Artisan and Tinker

schedule
We'll cover Laravels cron-like scheduler in Chapter 16, but in order for it to
work, you need to set the system cron to run schedule: run once a minute:

* % % * * php [home/myapp.com/artisan schedule:run >> /dev/null 2>&1

As you can see, this Artisan command is intended to be run regularly in order to
power a core Laravel service.

session
session:table creates a migration for applications using database-backed ses-
sions.

storage
storage:link creates a symbolic link from public/storage to storage/app/public.
This is a common convention in Laravel apps, to make it easy to put user uploads
(or other files that commonly end up in storage/app) somewhere where they’ll be
accessible at a public URL.

vendor
Some Laravel-specific packages need to “publish” some of their assets, either so
that they can be served from your public directory or so that you can modify
them. Either way, these packages register these “publishable assets” with Laravel,
and when you run vendor : publish, it publishes them to their specified locations.

view
Laravel’s view rendering engine automatically caches your views. It usually does a
good job of handling its own cache invalidation, but if you ever notice it’s gotten
stuck, run view:clear to clear the cache.

Writing Custom Artisan Commands

Now that we've covered the Artisan commands that come with Laravel out of the box,
let’s talk about writing your own.

First, you should know: there’s an Artisan command for that! Running php artisan
make:command YourCommandName generates a new Artisan command in app/Console/
Commands /{YourCommandName].php.

Writing Custom Artisan Commands | 117

php artisan make:command

The command signature for make:command has changed a few
A I S g .

times. It was originally command:make, but for a while in 5.2 it
was console:make and then make:console.

Finally, in 5.3, it’s settled: all of the generators are under the make:
namespace, and the command to generate new Artisan commands
is now make: command.

Your first argument should be the class name of the command, and you can option-
ally pass a --command parameter to define what the terminal command will be (e.g.,
appname:action).

So, let’s do it:
php artisan make:console WelcomeNewUsers --command=email:newusers

Take a look at Example 7-1 to see what you'll get.

Example 7-1. The default skeleton of an Artisan command
<?php

namespace App\Console\Commands;

use Illuminate\Console\Command;

class WelcomeNewUsers extends Command

{
/**
* The name and signature of the console command.
*

* @var string
*/

protected $signature = 'email:newusers';

/'k*
* The console command description.
*

* @var string
*/

protected $description = 'Command description';

/**
* Create a new command instance.
*

* @return void
*/
public function __construct()

{

118 | Chapter7: Artisan and Tinker

parent::__construct();

}
/**

* Execute the console command.
*

* @return mixed
*/
public function handle()
{
//
}
}

As you can see, it’s very easy to define the command signature, the help text it shows
in command lists, and the command’s behavior on instantiation (__construct())
and on execution (handle()).

Registering Commands

There’s one step left to make this new command usable in your application: you need
to register it.

Open app/Console/Kernel.php. You'll see an array of command class names under the
$commands property. To register your new command, add its class to this array. You
can write it out, or just use the ::class class name accessor on the class as in
Example 7-2.

Example 7-2. Registering a new command in the console kernel

class Kernel extends ConsoleKernel
{
/'k*
* The Artisan commands provided by your application.
*
* @var array
*/
protected $commands = [
\App\Console\Commands\WelcomeNewUsers: :class,

1;

Writing Custom Artisan Commands | 119

Writing closure-based commands

If youd prefer to keep your command definition process simpler,
you can write commands as closures instead of classes by defining
them in routes/console.php. Everything we discuss in this chapter
will apply the same way, but you will just define and register the
commands in a single step in that file:

// routes/console.php
Artisan: :command(
'password:reset {userId} {--sendEmail}',
function (SuserId, $sendEmail) {
// do something...
}
);

A Sample Command

We haven't covered mail or Eloquent yet (see Chapter 15 for mail and Chapter 8
for Eloquent), but the sample handle() method in Example 7-3 should read pretty
clearly.

Example 7-3. A sample Artisan command handle() method

class WelcomeNewUsers extends Command

{
public function handle()
{
User::signedUpThisWeek()->each(function (Suser) {
Mail::send(
'emails.welcome',
['name' => $user->name],
function ($m) use (Suser) {
$m->to(Suser->email)->subject('Welcome!");
}
);
b;
}

Now every time you run php artisan email:newusers, this command will grab
every user that signed up this week and send them the welcome email.

If you would prefer injecting your mail and user dependencies instead of using
facades, you can typehint them in the command constructor, and Laravel’s container
will inject them for you when the command is instantiated.

Take a look at Example 7-4 to see what Example 7-3 might look like using depend-
ency injection and extracting its behavior out to a service class.

120 | Chapter7: Artisan and Tinker

Example 7-4. The same command, refactored

class WelcomeNewUsers extends Command

{
public function __construct(UserMailer SuserMailer)
{
parent::__construct();
S$this->userMailer = SuserMailer
}
public function handle()
{
$this->userMailer->welcomeNewUsers();
}

Keep It Simple

It is possible to call Artisan commands from the rest of your code, so you can use
them to encapsulate chunks of application logic. This is a very common practice in
the Laravel community.

However, the Laravel docs recommend instead packaging the application logic into a
service class, and injecting that service into your command. Console commands are
seen as being similar to controllers: theyre not domain classes, theyre traffic cops
that just route incoming requests to the correct behavior.

Arguments and Options

The $signature property of the new command looks like it might just contain the
command name. But this property is also where you’ll define any arguments and
options for the command. There’s a specific, simple syntax you can use to add argu-
ments and options to your Artisan commands.

Before we dig into that syntax, take a look at an example for some context:

protected $signature = 'password:reset {userId} {--sendEmail}';

Arguments, required, optional, and/or with defaults

To define a required argument, surround it with braces:
password:reset {userId}

To make the argument optional, add a question mark:

password:reset {userId?}

Writing Custom Artisan Commands | 121

To make it optional and provide a default, use:

password:reset {userId=1}

Options, required values, value defaults, and shortcuts

Options are similar to arguments, but theyre prefixed with -- and can be used with
no value. To add a basic option, surround it with braces:

password:reset {userId} {--sendEmail}

If your option requires a value, add an = to its signature:
password:reset {userId} {--password=}

And if you want to pass a default value, add it after the =:

password:reset {userId} {--queue=default}

Array arguments and array options

Both for arguments and for options, if you want to accept an array as input, use the
* character:

password:reset {userIds*}

password:reset {--ids=*}

Using array arguments and parameters looks a bit like Example 7-5.

Example 7-5. Using array syntax with Artisan commands

// Argument
php artisan password:reset 1 2 3

// Option
php artisan password:reset --ids=1 --ids=2 --ids=3

Array arguments must be the last argument

Since an array argument captures every parameter after its defini-
tion and adds them as array items, an array argument has to be the
last argument or option within an Artisan command’s signature.

Input descriptions

Remember how the built-in Artisan commands can give us more information about
their parameters if we use artisan help? We can provide that same information
about our custom commands. Just add a colon and the description text within the
curly braces, like in Example 7-6.

122 | Chapter7: Artisan and Tinker

Example 7-6. Defining description text for Artisan arguments and options

protected $signature = 'password:reset
{userId : The ID of the user}
{--sendEmail : Whether to send user an email}';

Using Input

Now that we've prompted for this input, how do we use it in our command’s
handle() method? We have two options for retrieving the values of arguments
and options.

argument()

$this->argument() with no parameters returns an array of all arguments (the first
array item will be the command name). With a parameter passed, it'll return the
value of the argument specified:

// with definition "password:reset {userId}":
php artisan password:reset 5

// Sthis->argument() returns this array

[
"command": "password:reset",
"userId': "5",
1
// S$this->argument('userId') returns this string
Y
option()

$this->option() with no parameters returns an array of all options, including some
that will by default be false or null. With a parameter, it'll return the value of the
option specified:

// with definition "password:reset {--userId=}":
php artisan password:reset --userId=5

// Sthis->option() returns this array
[

"userId" => "5"

"help" => false

"quiet" => false

"verbose" => false

"version" => false

"ansi" => false

"no-ansi" => false

"no-interaction" => false

env" => null

Writing Custom Artisan Commands | 123

// Sthis->option('userId') returns this string
Y

Example 7-7 shows an Artisan command using argument() and option() in its
handle() method.

Example 7-7. Getting input from an Artisan command

public function handle()
{

// All arguments, including the command name
Sarguments = $this->argument();

// Just the 'userId' argument
Suserid = $this->argument('userId');

// All options, including some defaults like 'no-interaction' and 'env'
Soptions = $this->option();

// Just the 'sendEmail' option
$sendEmail = $this->option('sendEmail');

}

Prompts

There are a few more ways to get user input from within your handle() code,
and they all involve prompting the user to enter information during the execution of
your command:

ask()
Prompts the user to enter freeform text:

Semail = $this->ask('What is your email address?');

secret()
Prompts the user to enter freeform text, but hides the typing with asterisks:

$password = Sthis->secret('What is the DB password?');

confirm()
Prompts the user for a yes/no answer, and returns a boolean:

if (Sthis->confirm('Do you want to truncate the tables?')) {
//
}

All answers except y or Y will be treated as a “no””

124 | Chapter7: Artisan and Tinker

anticipate()
Prompts the user to enter freeform text, and provides autocomplete suggestions.
Still allows the user to type whatever she wants:

$album = $this->anticipate('What is the best album ever?', [
"The Joshua Tree", "Pet Sounds", "What's Going On"

D;

choice()
Prompts the user to choose one of the provided options. The last parameter is the
default if the user doesn’t choose:
Swinner = $this->choice(
'Who is the best football team?',

['Gators', 'Wolverines'],
0

);
Note that the final parameter, the default, should be the array key. Since we
passed a nonassociative array, the key for “Gators” is 0. You could also key your
array, if youd prefer:
Swinner = $this->choice(

'Who is the best football team?',

['gators' => 'Gators', 'wolverines' => 'Wolverines'],

'gators’

);

Output

During the execution of your command, you might want to write messages to
the user. The most basic way to do this is to use $this->info() to output basic green
text:

$this->info('Your command has run successfully.');

You also have available the comment() (orange), question() (highlighted teal),
error() (highlighted red), and line() (uncolored) methods to echo to the command
line.

Please note that the exact colors may vary from machine to machine, but they try to
be in line with the local machine€’s standards for communicating to the end user.

Table output

The table component makes it simple to create ASCII tables full of your data. Take a
look at Example 7-8.

Writing Custom Artisan Commands | 125

Example 7-8. Outputting tables with Artisan commands
Sheaders = ['Name', 'Email'];
Sdata = [

['Dhriti', 'dhriti@amrit.com'],

['Moses', 'moses@gutierez.com']

1;

// Or, you could get similar data from the database:
// Sdata = App\User::all(['name', 'email'])->toArray();

Sthis->table($headers, $data);

Note that Example 7-8 has two sets of data: the headers, and the data itself. Both con-
tain two “cells” per “row”; the first cell in each row is the name, and the second is the
email. That way the data from the Eloquent call (which is constrained to pull only
name and email) matches up with the headers.

Take a look at Example 7-9 to see what the table output looks like.

Example 7-9. Sample output of an Artisan table

R R R +
| Name | Email

R R R +
| Dhriti | dhriti@amrit.com |
| Moses | moses@gutierez.com |
R R +
Progress bars

If you've ever run npm install, you've seen a command-line progress bar before.
Let’s build one in Example 7-10.
Example 7-10. Sample Artisan progress bar

StotalUnits = 10;
Sthis->output->progressStart(Stotalunits);

for ($1 = 0; $1 < StotalUnits; S$i++) {
sleep(1);

$this->output->progressAdvance();

}

Sthis->output->progressFinish();

126 | Chapter7: Artisan and Tinker

What did we do here? First, we informed the system how many “units” we needed
to work through. Maybe a unit is a user, and you have 350 users. The bar will then
divide the entire width it has available on your screen by 350, and increment it
by 1/350th every time you run progressAdvance(). Once youre done, run
progressFinish() so it knows it’s done displaying the progress bar.

Calling Artisan Commands in Normal Code

While Artisan commands are designed to be run from the command line, you can
also call them from other code.

The easiest way is to use the Artisan facade. You can either call a command using
Artisan::call() (which will return the command’s exit code), or queue a command
using Artisan::queue().

Both take two parameters: first, the terminal command (password:reset); and sec-
ond, an array of parameters to pass it. Take a look at Example 7-11 to see how it
works with arguments and options.

Example 7-11. Calling Artisan commands from other code

Route::get('test-artisan', function () {
SexitCode = Artisan::call('password:reset', [
'userId' => 15, '--sendEmail' => true
D;
s

As you can see, arguments are passed by keying to the argument name, and options
with no value can be passed true or false.

You can also call Artisan commands from other commands, using $this->call,
(which is the same as Artisan::call(), or $this->callSilent, which is the same
but suppresses all output). See Example 7-12 for an example.

Example 7-12. Calling Artisan commands from other Artisan commands

public function handle()
{
$this->callSilent('password:reset', [
'userId' => 15
D;
}

Finally, you can inject an instance of the Illuminate\Contracts\Console\Kernel
contract, and use its call() method.

Calling Artisan Commands in Normal Code | 127

Tinker

Tinker is a REPL, or read—eval-print loop. If you've ever used IRB in Ruby, you’'ll be
familiar with how a REPL works.

REPLs give you a prompt, similar to the command-line prompt, that mimics a “wait-
ing” state of your application. You type your commands into the REPL, hit Return,
and then expect what you typed to be evaluated and the response printed out.

Example 7-13 provides a quick sample to give you a sense of how it works and how it
might be useful. We start the REPL with php artisan tinker and are then presented
with a blank prompt (>>>); every response to our commands is printed on a line pref-
aced with =>.

Example 7-13. Using Tinker

php artisan tinker

>>> $Suser = new App\User;

=> App\User: {}

>>> Suser->email = 'matt@mattstauffer.co';

=> "matt@mattstauffer.co"

>>> Suser->password = bcrypt('superSecret');

=> "$2y$10$TWPGBC7e8d1bvI1q5ky.VDUGFYDNE9gAN14mleuB3htIY2dxcQfQ5"
>>> Suser->save();

=> true

As you can see, we created a new user, set some data, and saved it to the database.
And this is real. If this were a production application, we would’ve just created a
brand new user in our system.

This makes Tinker a great tool for simple database interactions, for trying out new
ideas, and for running snippets of code when itd be a pain to find a place to put them
in the application source files.

Tinker is powered by Psy Shell, so check that out to see what else you can do with
Tinker.

Testing

Since you know how to call Artisan commands from code, it’s easy to do that in a test
and ensure that whatever behavior you expected to be performed has been performed
correctly, as in Example 7-14.

128 | Chapter7: Artisan and Tinker

http://psysh.org/

Example 7-14. Calling Artisan commands from a test

public function test_empty_log_command_empties_logs_table()

{
DB::table('logs')->insert(['message' => 'Did something']);
Artisan::call('logs:empty');
Sthis->assertCount(0, DB::table('logs')->get());

}

As always, facades are easy to swap out, but if you don’t want to do this you can
instead inject your dependencies into the constructor of the Artisan command, which
will make them easy to swap out at test time.

The Artisan facade provides access to the I1luminate\Contracts\Console\Kernel
contract, so if you want to avoid using the facade in your code, you can instead inject
an instance of that and use its call() method, as in Example 7-15.

Example 7-15. Injecting the kernel instead of using the Artisan facade

use Illuminate\Contracts\Console\Kernel;

class NightlyCleanup extends Job

{
public function handle(Kernel S$kernel)
{
// ... do other stuff
Skernel->call('logs:empty');
}

TL;DR

Artisan commands are Laravel’s command-line tools. Laravel comes with quite a few
out of the box, but it’s also easy to create your own Artisan commands and call them
from the command line or your own code.

Tinker is a REPL that makes it simple to get into your application environment and
interact with real code and real data.

TLOR | 129

CHAPTER 8
Database and Eloquent

Laravel provides a suite of tools for interacting with your applications databases,
but the most notable is Eloquent, Laravel's ActiveRecord ORM (object-relational
mapper).

Eloquent is one of Laravel’s most popular and influential features. It’s a great example
of how Laravel is different from the majority of PHP frameworks; in a world of Data-
Mapper ORMs that are powerful but complex, Eloquent stands out for its simplicity.
There’s one class per table, which is responsible for retrieving, representing, and per-
sisting data in that table.

Whether or not you choose to use Eloquent, however, you'll still get a ton of benefit
from the other database tools Laravel provides. So, before we dig into Eloquent, lets
start by covering the basics of Laravel’s database functionality: migrations, seeders,
and the query builder.

Then we'll cover Eloquent: defining your models; inserting, updating, and deleting;
customizing your responses with accessors, mutators, and attribute casting; and
finally relationships. There’s a lot going on here, and it’s easy to get overwhelmed, but
just take it one step at a time and we’ll make it through.

Configuration

Before we get into how to use Laravel’s database tools, let’s pause for a second and go
over how to configure your database credentials and connections.

The configuration for database access lives in config/database.php. Like many other
configuration areas in Laravel, you can define multiple “connections” and then decide
which the code will use by default.

131

Database Connections
By default, there’s one connection for each of the connection types, as you can see in
Example 8-1.
Example 8-1. The default database connections list
'connections' => [
'sqlite' => [

'driver' => 'sqlite',
'database' => database_path('database.sqlite'),

'prefix' => "',
1
'mysql’ => [
"driver' => 'mysql’,
"host' => env('DB_HOST', 'localhost'),

'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''"),
'charset' => 'utf8’',
'collation' => 'utf8_unicode ci',
'prefix’ ="',
'strict’ => false,
'engine’ => null,

1,

'pgsql’ => [
'driver' => 'pgsql’,
"host' => env('DB_HOST', 'localhost'),
'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''),
'charset' => 'utfg',
'prefix’ = '',
'schema’ => 'public',

1,

'sqlsrv' => [
'driver' => 'sqlsrv',
"host' => env('DB_HOST', 'localhost'),
'database' => env('DB_DATABASE', 'forge'),
'username' => env('DB_USERNAME', 'forge'),
'password' => env('DB_PASSWORD', ''),
'charset' => 'utfg8',
'prefix' => "',

1

132 |

Chapter 8: Database and Eloquent

You could create new named connections, though, and still be able to set the drivers
(MySQL, Postgres, etc.) in those new named connections. So, while there’s one con-
nection per driver by default, that’s not a constraint.

Each connection allows you to define the properties necessary for connecting to and
customizing each connection type.

There are a few reasons for the idea of multiple drivers. To start with, the “connec-
tions” section as it comes out of the box is a simple template that makes it easy to start
apps that use any of the supported database connection types. In many apps, you can
pick the database connection you’ll be using, fill out its information, and even delete
the others if youd like. I usually just keep them all there, in case I might eventually
use them.

But there are also some cases where you might need multiple connections within the
same application. For example, you might use different database connections for two
different types of data, or you might read from one and write to another. Support for
multiple connections makes this possible.

Other Database Configuration Options

The config.database configuration section has quite a few other configuration set-
tings. You can configure Redis access, customize the table name used for migrations,
determine the default connection, and toggle whether non-Eloquent calls return
stdClass or array instances.

With any service in Laravel that allows multiple “connections”—sessions can be
backed by the database or file storage, the cache can use Redis or Memcached, data-
bases can use MySQL or PostgreSQL—you can define multiple connections and also
choose that a particular connection will be the “default,” meaning it will be used any
time you don’t explicitly ask for a particular connection. Here’s how you ask for a spe-
cific connection, if you want to:

Susers = DB::connection('secondary')->select('select * from users');

Migrations

Modern frameworks like Laravel make it easy to define your database structure with
code-driven migrations. Every new table, column, index, and key can be defined in
code, and any new environment can be brought from bare database to your app’s per-
fect schema in seconds.

Migrations | 133

Defining Migrations

A migration is a single file that defines two things: the modifications desired when
running this migration up and the modifications desired when running this migra-
tion down.

“Up” and “Down” in Migrations
Migrations are always run in order by date. Every migration file is named something
like this: 2014_10_12_000000_create_users_table.php. When a new system is migra-
ted, the system grabs each migration, starting at the earliest date, and runs its up()
method—youre migrating it “up” at this point. But the migration system also allows
you to “roll back” your most recent set of migrations. Il grab each of them and run
its down() method, which should undo whatever changes the up migration made.

So, the up() method of a migration should “do” its migration, and the down() method
should “undo” it.

Example 8-2 shows what the default “create users table” migration that comes with
Laravel looks like.

Example 8-2. Laravel’s default “create users table” migration
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration
{
/**
* Run the migrations.
*
* @return void
*/
public function up()
{

Schema: :create('users', function (Blueprint $table) {
Stable->increments('id');
Stable->string('name');
Stable->string('email')->unique();
$table->string('password', 60);
$table->rememberToken();
$table->timestamps();

Hs

134 | Chapter 8: Database and Eloquent

/'k*
* Reverse the migrations.
*

* @return void
*/
public function down()

{
}

Schema: :drop('users');
}

As you can see, we have an up() method and a down() method. up() tells the migra-
tion to create a new table named users with a few fields, and down() tells it to drop
the users table.

Creating a migration

As we saw in Chapter 7, there’s an Artisan command for creating a migration file. It’s
php artisan make:migration, and it has a single parameter, which is the name of
the migration. For example, to create the table we just covered, you would run php
artisan make:migration create_users_table.

There are two flags you can optionally pass to this command. --create=table_name
prefills the migration with code designed to create a table named table_name, and
--table=_table_name_ just prefills the migration for modifications to an existing
table. Here are a few examples:

php artisan make:migration create_users_table

php artisan make:migration add_votes_to_users_table --table=users
php artisan make:migration create_users_table --create=users

Creating tables

We already saw in the default create_users_table migration that our migrations
depend on the Schema facade and its methods. Everything we can do in these migra-
tions will rely on the methods of Schema.

To create a new table in a migration, use the create() method—the first parameter is
the table name, and the second is a closure that defines its columns:

Schema: :create('tablename', function (Blueprint $table) {
// Create columns here

s

Creating columns

To create new columns in a table, whether in a create table call or a modify table call,
use the instance of Blueprint that’s passed into your closure:

Migrations | 135

Schema: :create('users', function (Blueprint $table) {
Stable->string('name');
s
Let’s look at the various methods available on Blueprint instances for creating col-
umns. I'll describe how they work in MySQL, but if youre using another database,
Laravel will just use the closest equivalent.

The following are the simple field Blueprint methods:

integer(colName), tinyInteger(colName), smalllnteger(colName), mediumInte
ger(colName), bigInteger(colName)
Adds an INTEGER type column, or one of its many variations

string(colName, OPTIONAL length)
Adds a VARCHAR type column

binary(colName)
Adds a BLOB type column

boolean(colName)
Adds a BOOLEAN type column (a TINYINT(1) in MySQL)

char(colName, length)
Adds a CHAR column

datetime(colName)
Adds a DATETIME column

decimal(colName, precision, scale)
Adds a DECIMAL column, with precision and scale—e.g., decimal('amount', 5,
2) specifies a precision of 5 and a scale of 2

double(colName, total digits, digits after decimal)
Adds a DOUBLE column—e.g., double(' tolerance', 12, 8) specifies 12 digits
long, with 8 of those digits to the right of the decimal place, as in 7204.05691739

enum(colName, [choiceOne, choiceTwo])
Adds an ENUM column, with provided choices

float(colName)
Adds a FLOAT column (same as double in MySQL)

json(colName) and jsonb(colName)
Adds a JSON or JSONB column (or a TEXT column in Laravel 5.1)

text(colName), mediumText(colName), longText(colName)
Adds a TEXT column (or its various sizes)

136 | Chapter 8: Database and Eloquent

time(colName)
Adds a TIME column

timestamp(colName)
Adds a TIMESTAMP column

uuid(colName)
Adds a UUID column (CHAR(36) in MySQL)

And these are the special (joined) Blueprint methods:

increments(colName) and bigIncrements(colName)
Add an unsigned incrementing INTEGER or BIG INTEGER primary key ID

timestamps() and nullableTimestamps()
Adds created_at and updated_at timestamp columns

rememberToken()
Adds a remember_token column (VARCHAR(100)) for user “remember me” tokens

softDeletes()
Adds a deleted_at timestamp for use with soft deletes

morphs(colName)
For a provided +colName+, adds an integer colName_id and a string col
Name_type (e.g., morphs('tag') adds integer tag_id and string tag_type); for
use in polymorphic relationships

Building extra properties fluently

Most of the properties of a field definition—its length, for example—are set as the
second parameter of the field creation method we looked at in the previous section.
But there are a few other properties that we’ll set by chaining more method calls after
the creation of the column. For example, this email field is nullable and will be placed
(in MySQL) right after the last_name field:

Schema: :table('users', function (Blueprint Stable) {

Stable->string('email')->nullable()->after('last_name');
H;

The following methods are used to set additional properties of a field:

nullable()
Allows NULL values to be inserted into this column

default('default content')
Specifies the default content for this column if no value is provided

Migrations | 137

unsigned()
Marks integer columns as unsigned

first() (MySQL only)
Places the column first in the column order

after(colName) (MySQL only)
Places the column after another column in the column order

unique()
Adds a UNIQUE index

primary()
Adds a primary key index

index()
Adds a basic index

Note that unique(), primary(), and index() can also be used outside of the fluent
column building context, which we’ll cover later.

Dropping tables

If you want to drop a table, there’s a drop method on Schema that takes one parame-
ter, the table name:

Schema: :drop('contacts');

Modifying columns

To modify a column, just write the code you would write to create the column as if it
were new, and then append a call to the change() method after it.

Required dependency before modifying columns

Before you modify any columns (or drop any columns in SQLite),
you’'ll need to add the doctrine/dbal package as a requirement in
S your composer.json, and run composer update to bring it in.

So, if we have a string column named name that has a length of 255 and we want to
change its length to 100, this is how we would write it:
Schema: :table('users', function (Stable) {
$table->string('name', 100)->change();
s
The same is true if we want to adjust any of its properties that aren’t defined in the
method name. To make a field nullable, we do this:

138 | Chapter 8: Database and Eloquent

Schema: :table('contacts', function (Stable) {
Stable->string('deleted_at')->nullable()->change();
b

Here’s how we rename a column:

Schema: :table('contacts', function (S$table)
{

S$table->renameColumn('promoted', 'is_promoted');

b
And this is how we drop a column:

Schema: :table('contacts', function ($table)

{
Stable->dropColumn('votes');

s

Modifying multiple columns at once in SQLite

If you try to drop or modify multiple columns within a single
\ migration closure and you are using SQLite, you'll run into errors.

In Chapter 12 T'll reccommend that you use SQLite for your testing
database, so even if youre using a more traditional database, you
may want to consider this a limitation for testing purposes.

However, you dont have to create a new migration for each.
Instead, just create multiple calls to Schema::table() within the
up() method of your migration:

public function up()

{
Schema: :table('contacts', function (Blueprint $table)

{
Stable->dropColumn('is_promoted');

s

Schema: :table('contacts', function (Blueprint S$Stable)

{

$table->dropColumn('alternate_email');
b;

Indexes and foreign keys

We've covered how to create, modify, and delete columns. Let’s move on to indexing
and relating them.

Adding indexes. Check out Example 8-3 for examples of how to add indexes to your
column.

Migrations | 139

Example 8-3. Adding column indexes in migrations

// after columns are created. ..

Stable->primary('primary_1id'); // Primary key; unnecessary if used increments()
S$table->primary(['first_name', 'last_name']); // Composite keys
Stable->unique('email'); // Unique index

$table->unique('email', 'optional_custom_index_name'); // Unique index
Stable->index('amount'); // Basic index

$table->index('amount', 'optional_custom_index_name'); // Basic index

Note that the first example (primary()) is not necessary if youre using the
increments() method to create your index; this will automatically add a primary key
index for you.

Removing indexes. We can remove indexes as shown in Example 8-4.

Example 8-4. Removing column indexes in migrations

Stable->dropPrimary('contacts_1id_primary');
$table->dropUnique('contacts_email_unique');
Stable->dropIndex('optional_custom_index_name');

// If you pass an array of column names to dropIndex, it will
// guess the index names for you based on the generation rules
Stable->dropIndex(['email', 'amount']);

Adding and removing foreign keys. To add a foreign key that defines that a particular
column references a column on another table, Laravel’s syntax is simple and clear:

Stable->foreign('user_id')->references('id')->on('users');
Here were adding a foreign index on the user_id column, showing that it references

the 1d column on the users table. Couldn’t get much simpler.

If we want to specify foreign key constraints, we can do that too, with onDelete()
and onUpdate(). For example:

Stable->foreign('user_id')
->references('id")
->on('users')
->onDelete('cascade');

To drop an index, we can either delete it by referencing its index name (which is
automatically generated by combining the names of the columns and tables being ref-
erenced):

Stable->dropForeign('contacts_user_1id_foreign');
or by passing it an array of the fields that it’s referencing on the local table:

$table->dropForeign(['user_id']);

140 | Chapter 8: Database and Eloquent

Running Migrations

Once you have your migrations defined, how do you run them? There’s an Artisan
command for that:

php artisan migrate

This command runs all “outstanding” migrations. Laravel keeps track of which
migrations you have run and which you haven't. Every time you run this command, it
checks whether you've run all available migrations, and if you havent, it'll run any
that remain.

There are a few options in this namespace that you can work with. First, you can run
your migrations and your seeds (which we'll cover next):

php artisan migrate --seed

You can also run any of the following commands:

« migrate:install creates the database table that keeps track of which migrations
you have and haven’t run; this is run automatically when you run your migra-
tions.

« migrate:reset rolls back every database migration you've run on this install.

« migrate:refresh rolls back every database migration you've run on this install,
and then runs every migration available. It’s the same as running migrate:reset
and then migrate, one after the other.

o migrate:rollback rolls back just the migrations that ran the last time you ran
migrate, or, with the added option --step=1, rolls back the number of migra-
tions you specify.

o migrate:status shows a table listing every migration, with a Y or N next to each
showing whether or not it has run yet in this environment.

Migrating with Homestead/Vagrant

If you're running migrations on your local machine and your .env
file points to a database in a Vagrant box, your migrations will fail.
You'll need to ssh into your Vagrant box and then run the migra-
tions from there. The same is true for seeds and any other Artisan
commands that affect or read from the database.

Seeding

Seeding with Laravel is so simple, it has gained widespread adoption as a part of nor-
mal development workflows in a way it hasn’t in previous PHP frameworks. There’s a

Seeding | 141

database/seeds folder that comes with a DatabaseSeeder class, which has a run()
method that is called when you call the seeder.

There are two primary ways to run the seeders: along with a migration, or separately.

To run a seeder along with a migration, just add - - seed to any migration call:

php artisan migrate --seed
php artisan migrate:refresh --seed

And to run it independently:

php artisan db:seed
php artisan db:seed --class=VotesTableSeeder

This will run whatever you have defined in the run() methods of every seeder class
(or just the class you passed to - -class).

Creating a Seeder
To create a seeder, use the make:seeder Artisan command:
php artisan make:seeder ContactsTableSeeder

You’ll now see a ContactsTableSeeder class show up in the database/seeds directory.
Before we edit it, let’s add it to the DatabaseSeeder class so it will run when we run
our seeders:

// database/seeds/DatabaseSeeder.php

public function run()

{
$this->call(ContactsTableSeeder::class);

}

Now let’s edit the seeder itself. The simplest thing we can do there is manually insert a
record using the DB facade:

<?php

use Illuminate\Database\Seeder;
use Illuminate\Database\Eloquent\Model;

class ContactsTableSeeder extends Seeder

{
public function run()
{
DB::table('contacts')->insert([
'name' => 'Lupita Smith'
'email' => 'lupita@gmail.com',
D;
}
}

142 | Chapter 8: Database and Eloquent

This will get us a single record, which is a good start. But for truly functional seeds,
you'll likely want to loop over some sort of random generator and run this insert()
many times, right?

Model Factories

Model factories define one (or more) patterns for creating fake entries for your data-
base tables. By default they’re named after an Eloquent class, but you can also just
name them after the table name if youre not going to work with Eloquent. Here’s the
same table set up both ways:

$factory->define(User::class, function (Faker\Generator $faker) {
return [
'name' => S$faker->name,
1;
b

$factory->define('users', function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
I
s
Theoretially you can name these factories anything you like, but naming the factory
after your Eloquent class is the most idiomatic approach.

Creating a model factory

Model factories are defined in database/factories/ ModelFactory.php. Each factory has a
name and a definition of how to create a new instance of the defined class. The
$factory->define() method takes the factory name as the first parameter and a clo-
sure that’s run for each generation as the second parameter.

The simplest factory we could define might look something like this:

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => 'Lupita Smith',
'email' => 'lupita@gmail.com',
1;
b;

Now we can use the factory() global helper to create an instance of Contact in our
seeding and testing:

// Create one
Scontact = factory(Contact::class)->create();

// Create many
factory(Contact::class, 20)->create();

Seeding | 143

However, if we used that factory to create 20 contacts, all 20 would have the same
information. That’s less useful.

We will get even more benefit from model factories when we take advantage of the
instance of Faker that’s passed into the closure; Faker makes it easy to randomize the
creation of structured fake data. The previous example now turns into this:

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
'email' => $faker->email,
IH
b
Now, every time we create a fake contact using this model factory, all of our proper-
ties will be unique.

Using a model factory

There are two primary contexts in which we’ll use model factories: testing (which
we'll cover in Chapter 12) and seeding, which we're talking about here. Lets write a
seeder using a model factory; take a look at Example 8-5.

Example 8-5. Using model factories

factory(Post::class)->create([
'title' => 'My greatest post ever'

D;

factory(User::class, 20)->create()->each(function ($u) use ($post) {
$post->comments()->save(factory(Comment::class)->make([
'user_id' => Su->id
D)
s

When we're using a factory, we use the factory() global helper, and pass it the name
of the factory—which, as we just saw, is the name of the Eloquent class we're generat-
ing an instance of. That returns the factory, and then we can run one of two methods
on it: make() or create().

Both methods generate an instance of this class, using the definition in modelFac-
tory.php. The difference is that make() creates the instance but doesn’t (yet) save it to
the database, whereas create() saves it to the database instantly.

The second example will make more sense once we cover relationships in Eloquent
later in this chapter.

144 | Chapter 8: Database and Eloquent

https://github.com/fzaninotto/Faker

Overriding properties when calling a model factory. If you pass an array to either make()
or create(), you can override specific keys, like we did in Example 8-5 to set the
user_1id on the comment and to manually set the title of our post.

Generating more than one instance with a model factory. If you pass a number as the sec-
ond parameter to the factory() helper, you can specify that youre creating more
than one instance. Instead of returning a single instance, it'll return a collection of
instances. This means you can treat the result like an array, you can associate each of
its instances with another entity, or you can use other entity methods on each
instance—like we used each() in Example 8-5 to add a comment from each newly
created user.

Defining and accessing multiple model factory types
Let’s go back to modelFactory.php for a second. We have a Contact factory defined:

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
'email' => $faker->email,
1;
H;

But sometimes you need more than one factory for a class of object. What if we need

to be able to add some contacts who are very important people (VIPs)? We can define
a second factory type for this, as seen in Example 8-6.

Example 8-6. Defining multiple factory types for the same model

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => $faker->name,
'email' => $faker->email,
1;
b

S$factory->defineAs(Contact::class, 'vip', function (Faker\Generator S$faker) {
return [
'name' => S$faker->name,
'email' => $faker->email,
'vip' => true,
1;
s

But that’s a lot of duplication, right? Thankfully, we can make any given model fac-
tory extend another, and then it can just override one or a few properties. Let’s have
our “VIP” contact now just extend the previous by using $factory->raw(), as shown
in Example 8-7.

Seeding | 145

Example 8-7. Extending a factory type

$factory->define(Contact::class, function (Faker\Generator S$faker) {
return [
'name' => $faker->name,
'email' => $faker-semail,
1;
b

$factory->defineAs(
Contact::class,
‘Vip' >
function (Faker\Generator $faker) use (S$factory) {
$contact = $factory->raw(Contact::class);

return array_merge(S$contact, ['vip' => true]);

s

Now, let’s make a specific type:

Svip = factory(Contact::class, 'vip')->create();

$vips = factory(Contact::class, 'vip', 3)->create();

Query Builder

Now that youre connected and you've migrated and seeded your tables, let’s get
started with how to use the database tools. At the core of every piece of Laravels
database functionality is the query builder, a fluent interface for interacting with your
database.

What Is a Fluent Interface?

A fluent interface is one that primarily uses method chaining to provide a simpler
API to the end user. Rather than expecting all of the relevant data to be passed into
either a constructor or a method call, fluent call chains can be built gradually, with
consecutive calls. Consider this comparison:

// Non-fluent:
Susers = DB::select(['table' => 'users', 'where' => ['type' => 'donor']]);

// Fluent:
Susers = DB::table('users')->where('type', 'donor')->get();

Laravel’s database architecture can connect to MySQL, Postgres, SQLite, and SQL
Server through a single interface, with just the change of a few configuration settings.

146 | Chapter 8: Database and Eloquent

If you've ever used a PHP framework, you've likely used a tool that allows you to run
“raw” SQL queries with basic escaping for security. The query builder is that, with a
lot of convenience layers and helpers on top, so let’s start there.

Basic Usage of the DB Facade

Before we get into building complex queries with fluent method chaining, let’s take a
look at a few sample DB facade commands. The DB facade is used both for query
builder chaining and for simpler raw queries, as illustrated in Example 8-8.

Example 8-8. Sample raw SQL and query builder usage

// basic statement
DB::statement('drop table users')

// raw select, and parameter binding
DB::select('select * from contacts where validated = ?', [true]);

// select using the fluent builder
Susers = DB::table('users')->get();

// joins and other complex calls
DB::table('users")
->join('contacts', function ($join) {
$join->on('users.id', '=', 'contacts.user_1id')
->where('contacts.type', 'donor');
b
->get();

Raw SQL

As we saw in Example 8-8, it’s possible to make any raw call to the database using the
DB facade and the statement() method: DB: :statement('SQL statement here').

But there are also specific methods for various common actions: select(), insert(),
update(), and delete(). These are still raw calls, but there are differences. First,
using update() and delete() will return the number of rows affected, whereas state
ment() won't; second, with these methods it’s clearer to future developers exactly
what sort of statement you're making.

Raw selects

The simplest of the specific DB methods is select(). You can run it without any addi-
tional parameters:

Susers = DB::select('select * from users');

Query Builder | 147

This will return a collection of stdClass objects.

Illuminate Collections

Prior to Laravel 5.3, the DB facade returned a stdClass object for methods that return
only one row (like first()), and an array for any that return multiple rows (like
all()). In Laravel 5.3, the DB facade, like Eloquent, returns a collection for any
method that returns (or can return) multiple rows. The DB facade returns an instance
of Illuminate\Support\Collection and Eloquent returns an instance of Il1luminate
\Database\Eloquent\Collection, which extends I1luminate\Support\Collection
with a few Eloquent-specific methods.

Collection is like a PHP array with superpowers, allowing you to run map(),
filter(), reduce(), each(), and much more on your data. You can learn more about
collections in Chapter 17.

Parameter bindings and named bindings

Laravel’s database architecture allows for the use of PDO parameter binding, which
protects your queries from potential SQL attacks. Passing a parameter to a statement
is as simple as replacing the value in your statement with a ?, then adding the value to
the second parameter of your call:

SusersOfType = DB::select(
'select * from users where type = ?',
[Stype]

);

You can also name those parameters for clarity:

SusersOfType = DB::select(
'select * from users where type = :type',
['type' => SuserType]

);

Raw inserts

From here, the raw commands all look pretty much the same. Raw inserts look like
this:

DB::insert(
'insert into contacts (name, email) values (?, ?)',
['sally', 'sally@me.com']

);

148 | Chapter 8: Database and Eloquent

Raw updates
Updates look like this:

$countUpdated = DB::update(
'update contacts set status = ? where id = ?',
['donor', $id]

)

Raw deletes
And deletes look like this:

ScountDeleted = DB::delete(
'delete from contacts where archived = ?',
[true]

);

Chaining with the Query Builder

Up until now, we haven’t actually used the query builder, per se. We've just used sim-
ple method calls on the DB facade. Let’s actually build some queries.

The query builder makes it possible to chain methods together to, you guessed it,
build a query. At the end of your chain youll use some method—likely get()—to
trigger the actual execution of the query you’ve just built.

Let’s take a look at a quick example:

SusersOfType = DB::table('users')
->where('type', $type)
->get();
Here, we built our query—users table, $type type—and then we executed the query
and got our result.

Let’s take a look at what methods the query builder allows you to chain. The methods
can be split up into what I'll call constraining methods, modifying methods, and end-
ing/returning methods.

Constraining methods

These methods take the query as it is and constrain it to return a smaller subset of
possible data:

select()
Allows you to choose which columns you're selecting:

Semails = DB::table('contacts')
->select('email', 'email2 as second_email')
->get();

Query Builder | 149

// or

Semails = DB::table('contacts')
->select('email')
->addSelect('email2 as second_email')
->get();

where()
Allows you to limit the scope of what’s being returned using WHERE. By default,
the signature of the where() method is that it takes three parameters—the col-
umn, the comparison operator, and the value:

$newContacts = DB::table('contact')
->where('created_at', '>', Carbon::now()->subDay())
->get();

However, if your comparison is =, which is the most common comparison, you
can drop the second operator: $SvipContacts = DB::table('contacts')-
swhere('vip',true)->get();.

If you want to combine where() statements, you can either chain them after each
other, or pass an array of arrays:

$newVips = DB::table('contacts')
->where('vip', true)
->where('created_at',
->subDay());

// Or

$newVips = DB::table('contacts')->where([
['vip', true],
['created_at',

D;

orWhere()
Creates simple OR WHERE statements:

>', Carbon::now()

>', Carbon::now()->subDay()],

$priorityContacts = DB::table('contacts')
->where('vip', true)
->orWhere('created_at',
->get();

>', Carbon::now()->subDay())

To create a more complex OR WHERE statement with multiple conditions, pass
orWhere() a closure:

Scontacts = DB::table('contacts')
->where('vip', true)
->orWhere(function ($query) {

Squery->where('created_at"',
->where('trial', false);

>', Carbon: :now()->subDay())

1))
->get();

150 | Chapter 8: Database and Eloquent

Potential confusion with multiple where and orWhere calls

If you are using orWhere() calls in conjunction with multiple
where() calls, you need to be very careful to ensure the query is
doing what you think it is. This isn’t because of any fault with Lara-
vel, but because a query like the following might not do what
you expect:

ScanEdit = DB::table('users')
->where('admin', true)
->orWhere('plan', 'premium')
->where('is_plan_owner', true)
->get();
SELECT * FROM users
WHERE admin = 1
OR plan = 'premium'
AND is_plan_owner = 1;
If you want to write SQL that says “if this OR (this and this),” which
is clearly the intention in the previous example, you'll want to pass
a closure into the orWhere() call:

$canEdit = DB::table('users')
->where('admin', true)
->orWhere(function (Squery) {
Squery->where('plan', 'premium')
->where('is_plan_owner', true);

b
->get();

SELECT * FROM users
WHERE admin = 1
OR (plan = 'premium' AND is_plan_owner = 1);

whereBetween(colName, [low, high])
Allows you to scope a query to return only rows where a column is between two
values (inclusive of the two values):
S$mediumDrinks = DB::table('drinks')

->whereBetween('size', [6, 12])
->get();

The same works for whereNotBetween(), but it will select the inverse.

whereIn(colName, [1, 2, 3])
Allows you to scope a query to return only rows where a column is in an

explicitly provided list of options:

$closeBy = DB::table('contacts')
->whereIn('state', ['FL', 'GA', 'AL'])
->get();

The same works for whereNotIn(), but it will select the inverse.

Query Builder | 151

whereNull(colName) and whereNotNull(colName)
Allow you to select only rows where a given column is NULL or is NOT NULL,
respectively.

whereRaw()
Allows you to pass in a raw, unescaped string to be added after the WHERE state-
ment: $goofs = DB::table('contacts')->whereRaw('id = 12345')->get().

Beware of SQL injection!

Any SQL queries passed to whereRaw() will not be escaped. Use
this method carefully and infrequently; this is the prime opportu-
I nity for SQL injection attacks in your app.

whereExists()
Allows you to select only rows that, when passed into a provided subquery,
return at least one row. Imagine you only want to get those users who have left at
least one comment:

Scommenters = DB::table('users')
->whereExists(function ($query) {
Squery->select('id')
->from('comments')
->whereRaw('comments.user_1id = users.id');

i)
->get();
distinct()
Selects only distinct rows. Usually this is paired with select(), because if you
use a primary key, there will be no duplicated rows: $lastNames =
DB::table('contacts')->select('last_name')->distinct()->get().

Modifying methods

These methods change the way the query’s results will be output, rather than just lim-
iting its results:

orderBy(colName, direction)
Orders the results. The second parameter may be either asc (the default) or desc:
Scontacts = DB::table('contacts')

->orderBy('last_name', 'asc')
->get();

152 | Chapter 8: Database and Eloquent

groupBy () and having() or havingRaw()
Groups your results by a column. Optionally, having() and havingRaw() allow
you to filter your results based on properties of the groups. For example, you
could look for only cities with at least 30 people in them:
$populousCities = DB::table('contacts')
->groupBy('city')
->havingRaw('count(contact_id) > 30")
->get();
skip() and take()
Most often used for pagination, these allow you to define how many rows to
return and how many to skip before starting the return—like a page number and
a page size in a pagination system:

Spage4 = DB::table('contacts')->skip(30)->take(10)->get();

latest(colName) and oldest(colName)
Sort by the passed column (or created_at if no column name is passed) in
descending (latest()) or ascending (oldest()) order.

inRandomOrder()
Sorts the result randomly.

Ending/returning methods
These methods stop the query chain and trigger the execution of the SQL query:

get()
Gets all results for the built query:

Scontacts = DB::table('contacts')->get();
SvipContacts = DB::table('contacts')->where('vip', true)->get();

first() and firstOrFail()
Get only the first result—like get(), but with a LIMIT 1 added:
SnewestContact = DB::table('contacts')
->orderBy('created_at', 'desc')
->first();
first()

Fails silently if there are no results, whereas firstOrFail() will throw an excep-
tion.

If you pass an array of column names to either method, they’ll return the data for
just those columns instead of all columns.

Query Builder | 153

find(id) and findOrFail(id)
Like first(), but you pass in an ID value that corresponds to the primary key to
look up. find() fails silently if a row with that ID doesn’t exist, while findOr
Fail() will throw an exception:

$ScontactFive = DB::table('contacts')->find(5);

value()
Plucks just the value from a single field from the first row. Like first(), but if
you only want a single column:

SnewestContactEmail = DB::table('contacts')

->orderBy('created_at', 'desc')
->value('email');

count()
Returns an integer count of all of the matching results:
$countVips = DB::table('contacts')
->where('vip', true)
->count();

min() and max()
Return the minimum or maximum value of a particular column:

ShighestCost = DB::table('orders')->max('amount');

sum() and avg()
Return the sum or average of all of the values in a particular column:
SaverageCost = DB::table('orders")

->where('status', 'completed')
->avg('amount');

Writing raw queries inside query builder methods with DB::raw

We've already seen a few custom methods for raw statements—for example, select()
has a selectRaw() counterpart that allows you to pass in a string for the query
builder to place after the WHERE statement.

You can also, however, pass in the result of a DB: : raw() call to almost any method in
the query builder to achieve the same result:

Scontacts = DB::table('contacts')
->select(DB::raw('*, (score * 100) AS integer_score'))
->get();

154 | Chapter 8: Database and Eloquent

Joins

Joins can sometimes be a pain to define, and there’s only so much a framework can do
to make them simpler, but the query builder does its best. Let’s look at a sample:

Susers = DB::table('users")

->join('contacts', 'users.id', '=', 'contacts.user_id')
->select('users.*', 'contacts.name', 'contacts.status')
->get();

The join() method creates an inner join. You can also chain together multiple joins
one after another, or use leftJoin() to get a left join.

Finally, you can create more complex joins by passing a closure into the join()
method:

DB::table('users")
->join('contacts', function ($join) {
$join
->on('users.id', '=', 'contacts.user_id')

->orOn('users.id', '=', 'contacts.proxy_user_id');
b
->get();

Unions

You can union two queries together by creating them first and then using the union()
or unionAll() method to union them:

$first = DB::table('contacts')
->whereNull('first_name');

Scontacts = DB::table('contacts')
->whereNull('last_name')
->union($first)

->get();

Inserts

The insert() method is pretty simple. Pass it an array to insert a single row or an
array of arrays to insert multiple rows, and use insertGetId() instead of insert() to
get the autoincrementing primary key ID back as a return:

$id = DB::table('contacts')->insertGetId([
'name' => 'Abe Thomas',
'email' => 'athomas1987@gmail.com’,

D;

DB::table('contacts')->insert([
['name' => 'Tamika Johnson', 'email' => 'tamikaj@gmail.com'],

Query Builder | 155

['name' => 'Jim Patterson', 'email' => 'james.patterson@hotmail.com'],
D;
Updates

Updates are also simple. Create your update query and, instead of get() or first(),
just use update() and pass it an array of parameters:

DB::table('contacts')
->where('points', '>', 100)
->update(['status' => 'vip']);

You can also quickly increment and decrement columns using the increment() and
decrement() methods. The first parameter of each is the column name, and the sec-
ond is (optionally) the number to increment/decrement by:

DB::table('contacts')->increment('tokens', 5);
DB::table('contacts')->decrement('tokens');

Deletes

Deletes are even simpler. Build your query and then end it with delete():

DB::table('users")
->where('last_login', '<', Carbon::now()->subYear())
->delete();

You can also truncate the table, which both deletes every row and also resets the auto-
incrementing ID:

DB::table('contacts')->truncate();

JSON operations

If you have JSON columns, you can update or select rows based on aspects of the
JSON structure by using the arrow syntax to traverse children:

// Select all records where the "isAdmin" property of the "options"
// JSON column is set to true
DB::table('users')->where('options->isAdmin', true)->get();

// Update all records, setting the "verified" property
// of the "options" JSON column to true
DB::table('users')->update(['options->isVerified', true]);

E This is a new feature in Laravel 5.3.

Transactions

If you're not familiar with database transactions, theyre a tool that allows you to wrap
up a series of database queries to be performed in a batch, which you can choose to
roll back, undoing the entire series of queries. Transactions are often used to ensure

156 | Chapter 8: Database and Eloquent

that all or none, but not some, of a series of related queries are performed—if one
fails, the ORM will roll back the entire series of queries.

With the Laravel query builder’s transaction feature, if any exceptions are thrown at
any point within the transaction closure, all the queries in the transaction will be rol-
led back. If the transaction closure finishes successfully, all the queries will be com-
mitted and not rolled back.

Let’s take a look at Example 8-9.

Example 8-9. A simple database transaction

DB::transaction(function () use (SuserId, $numVotes)

{
// Possibly failing DB query
DB::table('users')
->where('id', SuserlId)
->update(['votes' => SnumVotes]);
// Caching query that we don't want to run if the above query fails
DB::table('votes")
->where('user_1id"', S$userlId)
->delete();
s

We clearly had some previous process that summarized the number of votes from the
votes table. We want to cache that number on the users table and then wipe those
votes from the votes table. But, of course, we don't want to wipe the votes until the
update to the users table has run successfully. And we don’t want to keep the updated
number of votes on the users table if the votes table deletion fails.

If anything goes wrong with either query, the other won’t be applied. That’s the magic
of database transactions.

Note that you can also manually begin and end transactions—and this applies
both for query builder queries and for Eloquent queries. Start with
DB: :beginTransaction(), end with DB: :commit(), and abort with DB: : rol1Back().

Introduction to Eloquent

Eloquent is an ActiveRecord ORM, which means it’s a database abstraction layer that
provides a single interface to interact with multiple database types. “ActiveRecord”
means that a single Eloquent class is responsible for not only providing the ability to
interact with the table as a whole (e.g., User: :all() gets all users), but also represent-
ing an individual table row (e.g., $sharon = new User). Additionally, each instance is
capable of managing its own persistence; you can call $sharon->save() or
$sharon->delete().

Introduction to Eloquent | 157

Eloquent has a primary focus on simplicity, and like the rest of the framework, it
relies on “convention over configuration” to allow you to build powerful models with
minimal code.

For example, you can perform all of the operations in Example 8-11 with the model
defined in Example 8-10.

Example 8-10. The simplest Eloquent model
<?php
use Illuminate\Database\Eloquent\Model;

class Contact extends Model {}

Example 8-11. Operations achievable with the simplest Eloquent model

public function save(Request $request)

{
// Create and save a new contact from user input
$contact = new Contact();
Scontact->first_name = Srequest->input('first_name');
Scontact->last_name = $request->input('last_name');
Scontact->email = $request->input('email');
Scontact->save();
return redirect('contacts');
}
public function show($contactlId)
{
// Return a JSON representation of a Contact based on a URL segment;
// if the contact doesn't exist, throw an exception
return Contact::findOrFail($contactId);
}
public function vips()
{
// Unnecessarily complex example, but still possible with basic Eloquent
// class; adds a "formalName" property to every VIP entry
return Contact::where('vip', true)->get()->map(function (Scontact) {
Scontact->formalName = "The exalted {$contact->first_name} of the
{Scontact->last_name}s";
return $contact;
b
}

How? Convention. Eloquent assumes the table name (Contact becomes contacts),
and with that you have a fully functional Eloquent model.

158 | Chapter 8: Database and Eloquent

Let’s cover how we work with Eloquent models.

Creating and Defining Eloquent Models
First, let’s create a model. There’s an Artisan command for that:
php artisan make:model Contact
This is what we'll get, in app/Contact.php:
<2php
namespace App;
use Tlluminate\Database\Eloquent\Model;

class Contact extends Model
{
//

}

Creating a migration along with your model

If you want to automatically create a migration when you create
your model, pass the -m or - -migration flag:

php artisan make:model Contact --migration

Table name

The default behavior for table names is that Laravel “snake cases” and pluralizes your
class name, so SecondaryContact would access a table named secondary_contacts.
If youd like to customize the name, set the $table property explicitly on the model:

protected $table = 'contacts_secondary';

Primary key

Laravel assumes, by default, that each table will have an autoincrementing integer pri-
mary key, and it will be named id.

If you want to change the name of your primary key, change the $primaryKey prop-
erty:

protected $primaryKey = 'contact_id';
And if you want to set it to be nonincrementing, use:

public S$incrementing = false;

Introduction to Eloquent | 159

Timestamps

Eloquent expects every table to have created_at and updated_at timestamp col-
umns. If your table won't have them, disable the $timestamps functionality:

public Stimestamps = false;

You can customize the format Eloquent uses to store your timestamps to the database
by setting the $dateFormat class property to a custom string. The string will be
parsed using PHP’s date() syntax, so the following example will store the date as sec-
onds since the Unix epoch:

protected $dateFormat = 'U';

Retrieving Data with Eloquent

Most of the time you pull data from your database with Eloquent, you’ll use static
calls on your Eloquent model.

Let’s start by getting everything:
$allContacts = Contact::all();
That was easy. Let’s filter it a bit:
SvipContacts = Contact::where('vip', true)->get();

We can see that the Eloquent facade gives us the ability to chain constraints, and
from there the constraints get very familiar:

S$newestContacts = Contact::orderBy('created_at', 'desc')
->take(10)
->get();
It turns out that once you move past the initial facade name, youre just working
with Laravel’s query builder. You can do a lot more—well cover that soon—but
everything you can do with the query builder on the DB facade you can do on your
Eloquent objects.

Getone

Like we covered earlier in the chapter, you can use first() to return only the first
record from a query, or find() to pull just the record with the provided ID. For
either, if you append “orFail” to the method name, it will throw an exception if there
are no matching results. This makes findOrFail() a common tool in looking up an
entity by a URL segment (or throwing an exception if a matching entity doesn't exist)
like you can see in Example 8-12.

160 | Chapter 8: Database and Eloquent

Example 8-12. Using an Eloquent OrFail() method in a controller method

// ContactController
public function show($contactId)

{

return view('contacts.show')
->with('contact', Contact::findOrFail($contactId));

}

Any single return (first(), firstOrFail(), find(), or findOrFail()) will return an
instance of the Eloquent class. So, Contact::first() will return an instance of the
class Contact with the data from row 1 filling it out.

Exceptions

As you can see in Example 8-12, we don’t need to catch Eloquent’s
model not found exception (I1luminate\Database\Eloquent\Mod
elNotFoundException) in our controllers; Laravel’s routing system
will catch them and throw a 404 for us.

You could, of course, catch that particular exception and handle it,
if youd like.

Get many

get() works with Eloquent just like it does in normal query builder calls—build a
query and call get() at the end to get the results:

SvipContacts = Contact::where('vip', true)->get();

However, there is an Eloquent-only method, all(), which you'll often see people use
when they want to get an unfiltered list of all data in the table:

Scontacts = Contact::all();

Using get() instead of all()

Any time you can use all(), you could use get(). Contact: :get()
has the same response as Contact::all(). However, the moment
you start modifying your query—adding a where() filter, for exam-
ple—all() will no longer work, but get() will continue working.

So, even though all() is very common, I'd recommend using
get() for everything, and ignoring the fact that all() even exists.

The other thing that’s different about Eloquent’s get() method is that, prior to Lara-
vel 5.3, it returned an array instead of a collection. In 5.3 and later, they both return
collections.

Introduction to Eloquent | 161

Chunking responses with chunk()

If you've ever needed to process a large amount (thousands or more) of records at a
time, you may have run into memory or locking issues. Laravel makes it possible to
break your requests into smaller pieces (chunks) and process them in batches, keep-
ing the memory load of your large request smaller. Example 8-13 illustrates the use
of chunk().

Example 8-13. Chunking an Eloquent query to limit memory usage

Contact::chunk(100, function (S$contacts) {
foreach (Scontacts as $contact) {
// Do something with Scontact

}
s

Aggregates

The aggregates that are available on the query builder are available on Eloquent quer-
ies as well. For example:

ScountVips = Contact::where('vip', true)->count();
$sumVotes = Contact::sum('votes');
SaverageSkill = User::avg('skill_level');

Inserts and Updates with Eloquent

Inserting and updating values is one of the places where Eloquent starts to diverge
from normal query builder syntax.

Inserts

There are two primary ways to insert a new record using Eloquent.

First, you can create a new instance of your Eloquent class, set your properties man-
ually, and call save() on that instance, like in Example 8-14.

Example 8-14. Inserting an Eloquent record by creating a new instance

Scontact = new Contact;
Scontact->name = 'Ken Hirata';
Scontact->email = 'ken@hirata.com';
Scontact->save();

// or

$Scontact = new Contact([
'name' => 'Ken Hirata',
'email' => 'ken@hirata.com'

162 | Chapter 8: Database and Eloquent

D;

Scontact->save();

Until you save(), this instance of Contact represents the contact fully—except it has
never been saved to the database. That means it doesn't have an 1id, if the application
quits it won’t persist, and it doesn’t have its created_at and updated_at values set.

You can also pass an array to Model: :create() to achieve the same output, as shown
in Example 8-15.

Example 8-15. Inserting an Eloquent record by passing an array to create()

Scontact = Contact::create([
'name' => 'Keahi Hale',
'email' => 'halek481@yahoo.com'

D;

Also be aware that in any context where you are passing an array (either to new
Model(), Model::create(), or Model::update()), every property you set via
Model::create() has to be approved for “mass assignment,” which we’ll cover
shortly.

Note that if you're using Model: :create(), you don't need to save() the instance—
that’s handled as a part of the model’s create() method.

Updates

Updating records looks very similar to inserting. You can get a specific instance,
change its properties, and then save, or you can make a single call and pass an array
of updated properties. Example 8-16 illustrates the first approach.

Example 8-16. Updating an Eloquent record by updating an instance and saving

Scontact = Contact::find(1);
Scontact->email = 'natalie@parkfamily.com';
Scontact->save();

Since this record already exists, it will already have a created_at timestamp and an
id, which will stay the same, but the updated_at field will be changed to the current
date and time. Example 8-17 illustrates the second approach.

Example 8-17. gpdating one or more Eloquent records by passing an array to the
update() metho

Contact: :where('created_at', '<', Carbon::now()->subYear())
->update(['longevity' => 'ancient']);

Introduction to Eloquent | 163

// or

Scontact = Contact::find(1);
Scontact->update(['longevity' => 'ancient']);

This method expects an array where each key is the column name and each value is
the column value.

Mass assignment

We've looked at a few examples of how to pass arrays of values into Eloquent class
methods. However, none of these will actually work until you define which fields are
“fillable” on the model.

The goal of this is to protect (malicious) user input from accidentally setting new val-
ues on fields you donmt want changed. Consider the common scenario in
Example 8-18.

Example 8-18. Updating an Eloquent model using the entirety of a request’s input
// ContactController
public function update(Contact $contact, Request S$request)

{
}

Scontact->update($request->all());

If youre not familiar with the Illuminate Request object, Example 8-18 will take
every piece of user input and pass it to the update() method. That all() method
includes things like URL parameters and form inputs, so a malicious user could easily
add some things in there, like 1d and owner_1id, that you likely don’t want updated.

Thankfully, that won't actually work until you define your models fillable fields. You
can either whitelist the fillable fields, or blacklist the “guarded” fields to determine
which fields can or cannot be edited via “mass assignment”—i.e., by passing an array
of values into either create() or update(). Note that nonfillable properties can still
be changed by direct assignment (e.g., S$contact\->password = ‘'abc';).
Example 8-19 shows both approaches.

ﬁxample 8-19. Using Eloquent’s fillable or guarded properties to define mass-assignable
elds

class Contact

{

protected $fillable = ['name', 'email'];

// or

164 | Chapter 8: Database and Eloquent

protected $guarded = ['id', 'created_at', 'updated_at', 'owner_id'];

Using Request::only() with Eloquent mass assignment

In Example 8-18, we needed Eloquent’s mass assignment guard
because we were using the all() method on the request object to
pass the entirety of the user input into our Eloquent object.

Eloquent’s mass assignment protection is a great tool here, but
there’s also a helpful trick to keep you from accepting just any input
from the user.

The Request class has an only() method that allows you to pluck
only a few keys from the user input. So now you can do this:

Contact::create(Srequest->only('name', 'email'));

firstOrCreate() and firstOrNew()

Sometimes you want to to tell your application, “Get me an instance with these prop-
erties, or if it doesn’t exist, create it.” This is where the firstOr*() methods come in.
The firstOrCreate() and firstOrNew() methods take an array of keys and values as
their first parameter:

Scontact = Contact::firstOrCreate(['email' => 'luis.ramos@myacme.com']);

They’ll both look for and retrieve the first record matching those parameters, and if
there are no matching records, they’ll create an instance with those properties; first
OrCreate() will persist that instance to the database and then return it, while first
OrNew() will return it without saving it.

If you pass an array of values as the second parameter, those values will be added to
the created entry (if it’s created), but won't be used to look up whether the entry exists.

Deleting with Eloquent

Deleting with Eloquent is very similar to updating with Eloquent, but with soft dele-
tes, you can archive your deleted items for later inspection or even recovery.

Normal deletes

The simplest way to delete an instance is to call the delete() method on the instance
itself:

Scontact = Contact::find(5);
Scontact->delete();

Introduction to Eloquent | 165

However, if you only have the ID, there’s no reason to look up an instance just to
delete it; you can pass an ID or an array of IDs to the model’s destroy() method to
delete them directly:

Contact::destroy(1);

// or
Contact: :destroy([1, 5, 7]1);

Finally, you can delete all of the results of a query:

Contact: :where('updated_at', '<', Carbon::now()->subYear())->delete();

Soft deletes

Soft deletes mark database rows as deleted without actually deleting them from the
database. This gives you the ability to inspect them later; to have records that show
more than “no information, deleted” when displaying historic information; and to
allow your users (or admins) to restore some or all data.

The hard part about handcoding an application with soft deletes is that every query
you ever write will need to exclude the soft-deleted data. Thankfully, if you use Elo-
quent’s soft deletes, every query you ever make will be scoped to ignore soft deletes by
default, unless you explicitly ask to bring them back.

Eloquents soft delete functionality requires a deleted_at column to be added to the
table. Once you enable soft deletes on that Eloquent model, every query you ever
write (unless you explicitly include soft-deleted records) will be scoped to ignore soft-
deleted rows.

When Should | Use Soft Deletes?

Just because a feature exists, it doesn’t mean you should always use it. Many folks in
the Laravel community default to using soft deletes on every project just because the
feature is there. There are real costs to soft deletes, though. It’s pretty likely that, if you
view your database directly in a tool like Sequel Pro, you'll forget to check the
deleted_at column at least once. And if you don’t clean up old soft-deleted records,
your databases will get larger and larger.

Here’s my recommendation: don't use soft deletes by default. Instead, use them when
you need them, and when you do, clean out old soft deletes as aggressively as you can.
It’s a powerful tool, but not worth using unless you need it.

Enabling soft deletes. You enable soft deletes by doing three things: adding the
deleted_at column in a migration, importing the SoftDeletes trait in the model,
and adding the deleted_at column to your $dates property. There’s a softDe
letes() method available on the query builder to add the deleted_at column to a

166 | Chapter 8: Database and Eloquent

table, as you can see in Example 8-20. And Example 8-21 shows an Eloquent model
with soft deletes enabled.

Example 8-20. Migration to add the soft delete column to a table

Schema: :table('contacts', function (Blueprint $table) {
Stable->softDeletes();
s

Example 8-21. An Eloquent model with soft deletes enabled
<?php

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Contact extends Model

{
use SoftDeletes; // use the trait

protected $dates = ['deleted_at']; // mark this column as a date
}

Once you make these changes, every delete() and destroy() call will now set the
deleted_at column on your row to be the current date and time instead of deleting
that row. And all future queries will exclude that row as a result.
Querying with soft deletes. So, how do we get soft-deleted items?
First, you can add soft-deleted items to a query:

SallHistoricContacts = Contact::withTrashed()->get();

Next, you can use the trashed() method to see if a particular instance has been soft
deleted:

if (Scontact->trashed()) {
// do something
}

Finally, you can get only soft-deleted items:

$deletedContacts = Contact::onlyTrashed()->get();
Restoring soft-deleted entities. If you want to restore a soft-deleted item, you can run
restore() on an instance or a query:

Scontact->restore();

// or

Introduction to Eloquent | 167

Contact::onlyTrashed()->where('vip', true)->restore();
Force-deleting soft-deleted entities. You can delete a soft-deleted entity by calling
forceDelete() on an entity or query:

$contact->forceDelete();

// or

Contact::onlyTrashed()->forceDelete();

Scopes

We've covered “filtered” queries, meaning any query where were not just returning
every result for a table. But every time we've written them so far in this chapter, its
been a manual process using the query builder.

Local and global scopes in Eloquent allow you to define prebuilt “scopes” (filters) that
you can use either every time a model is queried (“global”) or every time you query it
with a particular method chain (“local”).

Local scopes
Local scopes are the simplest to understand. Let’s take this example:
SactiveVips = Contact::where('vip', true)->where('trial', false)->get();

First of all, if we write this combination of query methods over and over, it will get
tedious. But additionally, the knowledge of how to define someone being an “active
VIP” is now spread around our application. We want to centralize that knowledge.
What if we could just write this?

SactiveVips = Contact::activeVips()->get();
We can—it’s called a local scope. And it’s easy to define on the Contact class:

class Contact

{
public function scopeActiveVips(S$Squery)
{
return $query->where('vip', true)->where('trial', false);
}

To define a local scope, we add a method to the Eloquent class that begins with
“scope” and then contains the title-cased version of the scope name. This method is
passed a query builder and needs to return a query builder, but of course you can
modify the query before returning—that’s the whole point.

168 | Chapter 8: Database and Eloquent

You can also define scopes that accept parameters:

class Contact

{
public function scopeStatus($query, Sstatus)
{
return $query->where('status', $status);
}

And you use them in the same way, just passing the parameter to the scope:

$friends = Contact::status('friend')->get();

Global scopes

Remember how we talked about soft deletes only working if you scope every query on
the model to ignore the soft-deleted items? That’s a global scope. And we can define
our own global scopes, which will be applied on every query made from a given
model.

There are two ways to define a global scope: using a closure or using an entire class.
In each, you'll register the defined scope in the model’s boot() method. Let’s start
with the closure method, illustrated in Example 8-22.

Example 8-22. Adding a global scope using a closure

class Contact extends Model

{

protected static function boot()

{
parent: :boot();
static::addGlobalScope('active', function (Builder S$Sbuilder) {

$builder->where('active', true);

b;

}

That’s it. We just added a global scope, named active, and every query on this model
will be scoped to only rows with active set to true.

Next, let’s try the longer way, as shown in Example 8-23. Create a class that imple-
ments I1luminate\Database\Eloquent\Scope, which means it will have an apply()
method that takes an instance of a query builder and an instance of the model.

Example 8-23. Creating a global scope class
<?php

namespace App\Scopes;

Introduction to Eloquent | 169

use Illuminate\Database\Eloquent\Scope;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Builder;

class ActiveScope implements Scope

{
public function apply(Builder $builder, Model $model)
{
return $builder->where('active', true);
}
}

To apply this scope to a model, once again override the parents boot() method and
call addGlobalScope() on the class using static, as shown in Example 8-24.
Example 8-24. Applying a class-based global scope

<?php

use App\Scopes\ActiveScope;
use Illuminate\Database\Eloquent\Model;

class Contact extends Model

{
protected static function boot()
{
parent: :boot();
static::addGlobalScope(new ActiveScope);
}
}

Contact with no namespace

You may have noticed that several of these examples have used the
class Contact, with no namespace. This is abnormal, and I've only
done this to save space in the book. Normally even your top-level
models would live at something like App\Contact.

Removing global scopes. There are three ways to remove a global scope, and all three
use the withoutGlobalScope() or withoutGlobalScopes() methods. If youre
removing a closure-based scope, the first parameter of that scope’s addGlobalScope()
registration will be the key you used to enable it:

$allContacts = Contact::withoutGlobalScope('active')->get();

If youre removing a single class-based global scope, you can pass the class name to
withoutGlobalScope() or withoutGlobalScopes():

170 | Chapter 8: Database and Eloquent

Contact: :withoutGlobalScope(ActiveScope::class)->get();

Contact: :withoutGlobalScopes([ActiveScope::class, VipScope::class])->get();
Or, you can just disable all global scopes for a query:

Contact: :withoutGlobalScopes()->get();

Customizing Field Interactions with Accessors, Mutators, and
Attribute Casting

Now that we've covered how to get records into and out of the database with Elo-
quent, let’s talk about decorating and manipulating the individual attributes on your
Eloquent models.

Accessors, mutators, and attribute casting all allow you to customize the way individ-
ual attributes of Eloquent instances are input or output. Without using any of these,
each attribute of your Eloquent instance is treated like a string, and you can’t have any
attributes on your models that don't exist on the database. But we can change that.

Accessors

Accessors allow you to define custom attributes on your Eloquent models for when
you are reading data from the model instance. This may be because you want to
change how a particular column is output, or because you want to create a custom
attribute that doesn’t exist in the database table at all.

You define an accessor by writing a method on your model with the following struc-
ture: get{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the accessor method would be named getFirstNameAttribute.

Let’s try it out. First, we'll decorate a preexisting column (Example 8-25).

Example 8-25. Decorating a preexisting column with Eloquent accessors

// Model definition:
class Contact extends Model

{
public function getNameAttribute($value)
{
return $value ?: '(No name provided)';
}
}

// Accessor usage:
Sname = $contact->name;

But we can also use accessors to define attributes that never existed in the database, as
seen in Example 8-26.

Introduction to Eloquent | 171

Example 8-26. Defining an attribute with no backing column using Eloquent accessors

// Model definition:
class Contact extends Model

{
public function getFullNameAttribute()
{
return $this->first_name . ' ' . $this->last_name;
}
}

// Accessor usage:
S$fullName = S$Scontact->full_name;

Mutators

Mutators work the same way as accessors, except they’re for determining how to pro-
cess setting the data instead of getting it. Just like with accessors, you can use it to
modify the process of writing data to existing columns, or to allow for setting col-
umns that don't exist in the database.

You define a mutator by writing a method on your model with the following struc-
ture: set{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the mutator method would be named setFirstNameAttribute.

Lets try it out. First, we'll add a constraint to updating a preexisting column
(Example 8-27).
Example 8-27. Decorating setting the value of an attribute with Eloquent mutators

// Defining the mutator
class Order extends Model

{
public function setAmountAttribute($value)
{
$this->attributes['amount'] = Svalue > 0 ? S$Svalue : 0;
}
}

// Using the mutator
Sorder->amount = '15';

This reveals that the way mutators are expected to “set” data on the model is by set-
ting it in $this->attributes with the column name as the key.

Now, let’s add a proxy column for setting, as shown in Example 8-28.

172 | Chapter 8: Database and Eloquent

Example 8-28. Allowing for setting the value of a nonexistent attribute with Eloquent
mutators

// Defining the mutator
class Order extends Model

{
public function setWorkgroupNameAttribute($workgroupName)
{
$this->attributes['email'] = "{$workgroupName}@ourcompany.com";
}
}

// Using the mutator
Sorder->workgroup_name = 'jstott';

As you can probably guess, it’s relatively uncommon to create a mutator for a non-
existent column, because it can be confusing to set one property and have it change a
different column—but it is possible.

Attribute casting

You can probably imagine writing accessors to cast all of your integer-type fields as
integers, encode and decode JSON to store in TEXT column, or convert TINYINT 0 and
1 to and from boolean values.

Thankfully, there’s a system for that in Eloquent already. It's called attribute casting,
and it allows you to define that any of your columns should always be treated, both
on read and on write, as if they are of a particular data type. The options are listed in
Table 8-1.

Table 8-1. Possible attribute casting column types

Type Description

int|integer Casts with PHP (int)

real|float|double C(asts with PHP (float)

string Casts with PHP (string)

bool|boolean Casts with PHP (bool)

object Parses to/from JSON, as a stdClass object

array Parses to/from JSON, as an array

collection Parses to/from JSON, as a collection

date|datetime Parses from database DATETIME to Carbon, and back
timestamp Parses from database TIMESTAMP to Carbon, and back

Example 8-29 shows how you use attribute casting in your model.

Introduction to Eloquent | 173

Example 8-29. Using attribute casting on an Eloquent model

class Contact

{
protected $casts = [
'vip' => 'boolean',
'children_names' => 'array',
'birthday' => 'date',
1;
}
Date mutators

You can choose for particular columns to be mutated as timestamp columns by
adding them to the dates array, as seen in Example 8-30.

Example 8-30. Defining columns to be mutated as timestamps

class Contact
{
protected $dates = [
'met_at'
1;
}

By default, this array contains created_at and updated_at, so adding entries to
dates just adds them to the list.

However, there’s no difference between adding columns to this list and adding them
to $this->casts as timestamp, so this is becoming a bit of an unnecessary feature
now that attribute casting can cast timestamps (new in Laravel 5.2).

Eloquent Collections

When you make any query call in Eloquent that has the potential to return multiple
rows, instead of an array they’ll come packaged in an Eloquent collection, which is a
specialized type of collection. Let’s take a look at collections and Eloquent collections,
and what makes them better than plain arrays.

Introducing the base collection

Laravel's Collection objects (Illuminate\Support\Collection) are a little bit like
arrays on steroids. The methods they expose on array-like objects are so helpful that,
once you've been using them for a while, you'll likely want to pull Illuminate into
even non-Laravel projects just for collections—which you can, with the Tightenco/
Collect package.

174 | Chapter 8: Database and Eloquent

https://github.com/tightenco/collect
https://github.com/tightenco/collect

You can create a collection by passing an array into its constructor, or by creating an
empty collection and pushing entries onto it. Laravel also has a collect() helper,
which is the simplest way to create a collection. Let’s try it:

$collection = collect([1, 2, 31);
Now let’s say we want to filter out any even numbers:

$odds = $Scollection->reject(function ($item) {
return S$item % 2 === 0;
10N
Or what if we want to get a version of the array where each item is multiplied by 10?
We can do that as follows:

smultiplied = Scollection->map(function (Sitem) {
return $item * 10;

s

We can even get only the evens, multiply them all by 10, and reduce them to a single
number by sum:

$sum = Scollection
->filter(function ($item) {
return $item % 2 == 0;
})->map(function ($item) {
return $item * 10;

1 ->sum();

As you can see, collections provide a series of methods, which can optionally be
chained, to perform functional operations on your arrays. They provide the same
functionality as native PHP methods like array_map() and array_reduce(), but you
don’t have to memorize PHP’s unpredictable parameter order, and the method chain-
ing syntax is endlessly more readable.

There are more than 60 methods available on the Collection class, including meth-
ods like max() and whereIn(), flatten(), and flip(), and there’s not enough space
to cover them all here. We'll cover more in “Collections” on page 398, or you can
check out the Laravel docs on Collections to see all of the methods.

Collections in the place of arrays

Collections can also be used in any context (except typehinting)
where you can use arrays; they allow for iteration, so you can pass
them to foreach, and they allow for array access, so if they’re keyed
you can try $a = $collection['a'].

Introduction to Eloquent | 175

https://laravel.com/docs/master/collections

What Eloquent collections add

Each Eloquent collection is a normal collection, but extended for the particular needs
of a collection of Eloquent results.

Once again, there’s not enough room here to cover all of the additions, but they’re
centered around the unique aspects of interacting with a collection not just of generic
objects, but objects meant to represent database rows.

For example, every Eloquent collection has a method called modelKeys() that returns
an array of the primary keys of every instance in the collection. find($id) looks for
an instance that has the primary key of $1id.

One additional feature available here is the ability to define that any given model
should return its results wrapped in a specific class of collection. So, if you want to
add specific methods to any collection of objects of the Order class—possibly related
to summarizing the financial details of your orders—you could create a custom Order
Collection that extends the I1luminate\Database\Eloquent\Collection class, and
then register it in your model, as shown in Example 8-31.

Example 8-31. Custom Collection classes for Eloquent models

class OrderCollection extends Collection

{
public function sumBillableAmount()
{
return $this->reduce(function (Scarry, Sorder) {
return $carry + ($order->billable ? $order-=amount : 0);
1, 0);
}
}

class Order extends Model

{
public function newCollection(array S$models = [])
{
return new OrderCollection($models);
}

Now, any time you get back a collection of Orders (e.g., from Order::all()) it'll
actually be an instance of the OrderCollection class:

Sorders = Order::all();
S$billableAmount = $Sorders->sumBillableAmount();

176 | Chapter 8: Database and Eloquent

Eloquent Serialization

Serialization is what happens when you take something complex—an array, or an
object—and convert it to a string. In a web-based context, that string is often JSON,
but it could take other forms as well.

Serializing complex database records can be, well, complex, and this is one of the
places many ORMs fall short. Thankfully, you get two powerful methods for free with
Eloquent: toArray() and toJson(). Collections also have toArray() and toJson(),
so all of these are valid:

ScontactArray = Contact::first()->toArray();
ScontactJson = Contact::first()->toJson();
ScontactsArray = Contact::all()->toArray();
$contactsJson = Contact::all()->toJson();

You can also cast an Eloquent instance or collection to a string ($string = (string)
$contact;), but both models and collections will just run toJson() and return
the result.

Returning models directly from route methods

Laravel’s router eventually converts everything routes return to a string, so there’s a
clever trick you can use. If you return the result of an Eloquent call in a controller, it
will be automatically cast to a string, and therefore returned as JSON. That means a
JSON-returning route can be as simple as either of the ones in Example 8-32.

Example 8-32. Returning JSON from routes directly

// routes/web.php
Route::get('api/contacts', function () {
return Contact::all();

s

Route::get('api/contacts/{id}', function ($id) {
return Contact::findOrFail($id);
s

Hiding attributes from JSON

It’s very common to use JSON returns in APIs, and it’s very common to want to hide
certain attributes in these contexts, so Eloquent makes it easy to hide any attributes
every time you cast to JSON.

Introduction to Eloquent | 177

You can either blacklist attributes, hiding the ones you list:

class Contact extends Model

{

public $hidden = ['password', 'remember_token'];
or whitelist attributes, showing only the ones you list:

class Contact extends Model

{

public S$visible = ['name', 'email', 'status'];
This also works for relationships:

class User extends Model

{
public $hidden = ['contacts'];

public function contacts()

{
}

return $this->hasMany(Contact::class);

Loading the contents of a relationship

By default, the contents of a relationship are not loaded when
you get a database record, so it doesn't matter whether you hide
them or not. But, as we'll learn shortly, it’s possible to get a record
with its related items, and in this context, those items will not be
included in a serialized copy of that record if you choose to hide
that relationship.

In case youre curious now, you can get a User with all contacts—
assuming you’ve set up the relationship correctly—with the follow-
ing call:

Suser = User::with('contacts')->first();

There might be times when you want to make an attribute visible just for a single call.
That’s possible, with the Eloquent method makeVisible():

Sarray = Suser->makeVisible('remember_token')->toArray();

178 | Chapter 8: Database and Eloquent

Adding a generated column to array and JSON output

If you have created an accessor for a column that doesn’t exist—for
example, our full_name column from Example 8-26—add it to
the $appends array on the model to add it to the array and JSON
output:

class Contact extends Model

{
protected $appends = ['full_name'];

public function getFullNameAttribute()
{

return "{S$this->first_name} {$this->last_name}";

Eloquent Relationships

In a relational database model, it’s expected that you will have tables that are related to
each other—hence the name. Eloquent provides simple and powerful tools to make
the process of relating your database tables easier than ever before.

Many of our examples in this chapter have been centered around a user who has
many contacts, a relatively common situation.

In an ORM like Eloquent, you would call this a one-to-many relationship: the one
user has many contacts.

If it was a CRM where a contact could be assigned to many users, then this would be
a many-to-many relationship: many users can be related to one contact, and each user
can be related to many contacts. A user has and belongs to many contacts.

If each contact can have many phone numbers, and a user wanted a database of every
phone number for their CRM, you would say the user has many phone numbers
through contacts—that is, a user has many contacts, and the contact has many phone
numbers, so the contact is sort of an intermediary.

And what if each contact has an address, but youre only interested in tracking one
address? You could have all the address fields on the Contact, but you might also cre-
ate an Address model—meaning the contact has one address.

Finally, what if you want to be able to star (favorite) contacts, but also events? This
would be a polymorphic relationship, where a user has many stars, but some may be
contacts and some may be events.

So, let’s dig into how to define and access these relationships.

Introduction to Eloquent | 179

One to one

Let’s start simple: a Contact has one PhoneNumber. This relationship is defined in
Example 8-33.

Example 8-33. Defining a one-to-one relationship

class Contact extends Model

{
public function phoneNumber()
{
return $this->hasOne(PhoneNumber::class);
}

As you can tell, the methods defining relationships are on the Eloquent model itself
($this->hasOne()) and take, at least in this instance, the fully qualified class name of
the class that you're relating them to.

How should this be defined in your database? Since we've defined that the Contact
has one PhoneNumber, Eloquent expects that the table supporting the PhoneNumber
class (likely phone_numbers) has a contact_id column on it. If you named it some-
thing different (for instance, owner_id), you’ll need to change your definition:

return $this->hasOne(PhoneNumber::class, 'owner_id');
Here’s how we access the phone number on a contact:

Scontact = Contact::first();
$contactPhone = $contact->phoneNumber;

Notice that we define the method in Example 8-33 with phoneNumber(), but
we access it with ->phoneNumber. That’s the magic. You could also access it with
->phone_number. This will return a full Eloquent instance of the related PhoneNumber
record.

But what if we want to access the Contact from the PhoneNumber? There’s a method
for that, too (see Example 8-34).

Example 8-34. Defining a one-to-one relationship’s inverse

class PhoneNumber extends Model

{
public function contact()
{
return $this->belongsTo(Contact::class);
}

Then we access it the same way:

Scontact = $phoneNumber->contact;

180 | Chapter 8: Database and Eloquent

Inserting related items

Each relationship type has its own quirks for how to relate models,
but here’s the core of how it works: pass an instance to save(), or
an array of instances to saveMany(). You can also pass properties to
create() and it'll make a new instance for you:

Scontact = Contact::first();

$phoneNumber = new PhoneNumber;
$phoneNumber ->number = 8008675309;
$contact->phoneNumbers()->save($phoneNumber);

// or

$Scontact->phoneNumbers()->saveMany([
PhoneNumber: : find(1),
PhoneNumber::find(2),

s

// or
$contact->phoneNumbers()->create([

"number' => '+13138675309'
D;

One to many

The one-to-many relationship is by far the most common. Let’s take a look at how to
define that our User has many Contacts (Example 8-35).

Example 8-35. Defining a one-to-many relationship

class User extends Model

{
public function contacts()
{
return $this->hasMany(Contact::class);
}

Once again, this expects that the Contact model’s backing table (likely contacts) has
a user_1id column on it. If it doesn't, override it by passing the correct column name
as the second parameter of hasMany().

We can get a user’s contacts as follows:

Suser = User::first();
SusersContacts = Suser->contacts;

Just like with one to one, we use the name of the relationship method and call it as if
it were a property instead of a method. However, this method returns a collection

Introduction to Eloquent | 181

instead of a model instance. And this is a normal Eloquent collection, so you can have
all sorts of fun with it:

$donors = Suser->contacts->filter(function ($contact) {
return S$contact->status == 'donor';

s

$lifetimeValue = $contact->orders->reduce(function (Scarry, Sorder) {
return $carry + Sorder->amount;

}, 0);

Just like with one to one, we can also define the inverse (Example 8-36).

Example 8-36. Defining a one-to-many relationships inverse

class Contact extends Model

{
public function user()
{
return $this->belongsTo(User::class);
}

And just like one to one, we can access the User from the Contact:

SuserName = S$Scontact->user->name;

Attaching and detaching related items from the attached item

Most of the time we attach related items by running save() on the
parent and passing in the related item, as in $user->contacts()-
>save($contact). But if you want to perform the behaviors on the
attached (“child”) item, you can use associate() and dissoct
ate() on the method that returns the belongsTo():

Scontact = Contact::first();

Scontact->user()->associate(User::first());
$contact->save();

// and later

Scontact->user()->dissociate();
Scontact->save();

Using relationships as query builders. Until now, we've taken the method name (e.g., con
tacts()) and called it as if were a property (e.g., Suser->contacts). What happens if
we call it as a method? Instead of processing the relationship, it will return a presco-
ped query builder.

182 | Chapter 8: Database and Eloquent

So if you have User 1, and you call its contacts() method, you will now have a
query builder prescoped to “all contacts that have a field user_id with the value of 17
You can then build out a functional query from there:

Sdonors = $user->contacts()->where('status', 'donor')->get();
Selecting only records that have arelated item. You can also choose to select only
records that meet particular criteria with regard to their related items using has():
SpostsWithComments = Post::has('comments')->get();
You can also adjust the criteria further:
$postsWithManyComments = Post::has('comments', '>=', 5)->get();
You can nest the criteria:
SusersWithPhoneBooks = User::has('contacts.phoneNumbers')->get();
And finally, you can write custom queries on the related items:

// Gets all contacts with a phone number containing the string "867-5309"

$jennyIGotYourNumber = Contact::whereHas('phoneNumbers', function ($query) {
Squery->where('number', 'like', '%867-5309%"');

s

Has many through

“Has many through” is really a convenience method for pulling in relationships of a
relationship. This is the example I gave earlier where a User has many Contacts and
each Contact has many PhoneNumbers. What if you want to get a user’s list of contact
phone numbers? That’s has many through.

This structure assumes that your contacts table has a user_id to relate the contacts
to the users, and the phone_numbers table has a contact_id to relate it to the con-
tacts. Then, we define the relationship on the User as in Example 8-37.

Example 8-37. Defining a has-many-through relationship

class User extends Model

{
public function phoneNumbers()
{
return $this->hasManyThrough(PhoneNumber::class, Contact::class);
}

Youd access this relationship using $user->phone_numbers, and as always you can
customize the relationship key on the intermediate model (with the third parameter
of hasmanyThrough()) and the relationship key on the distant model (with the fourth
parameter).

Introduction to Eloquent | 183

Many to many

This is where things start to get complex. Let’s take our example of a CRM that allows
a User to have many Contacts, and each Contact to be related to multiple users.

First, we define the relationship on the User as in Example 8-38.

Example 8-38. Defining a many-to-many relationship

class User extends Model

{
public function contacts()
{
return $this->belongsToMany(Contact::class);
}
}

And since this is many to many, the inverse looks exactly the same (Example 8-39).

Example 8-39. Defining a many-to-many relationship’s inverse

class Contact extends Model

{
public function users()
{
return $this->belongsToMany(User::class);
}
}

Since a single Contact can’t have a user_id column and a single User can't have a
contact_id column, many-to-many relationships rely on a pivot table that connects
the two. The conventional naming of this table is done by placing the two singular
table names together, ordered alphabetically, and separating them by an underscore.

So, since were linking users and contacts, our pivot table should be named
contacts_users (if youd like to customize the table name, pass it as the second
parameter to the belongsToMany() methods). It needs two columns: contact_1id and
user_1id.

Just like with hasMany(), we get access to a collection of the related items, but this

time it’s from both sides (Example 8-40).

Example 8-40. Accessing the related items from both sides of a many-to-many
relationship

Suser = User::first();

Suser->contacts->each(function (Scontact) {
// do something

184 | Chapter 8: Database and Eloquent

s
Scontact = Contact::first();

$contact->users->each(function (Suser) {
// do something
s

$donors = $Suser->contacts()->where('status', 'donor')->get();

Unique Aspects of Attaching and Detaching
Many-to-Many Related Items

Since your pivot table can have its own properties, you need to be able to set those
properties when you're attaching a many-to-many related item. You can do that by
passing an array as the second parameter to save():

Suser = User::first();
Scontact = Contact::first();
Suser->contacts()->save($Scontact, ['status' => 'donor']);

Additionally, you can use attach() and detach() and, instead of passing in an
instance of a related item, you can just pass an ID. They work just the same as save(),
but can also accept an array of IDs without you needing to rename the method to
something like attachMany():

Suser = User::first();
Suser->contacts()->attach(1);
Suser->contacts()->attach(2, ['status' => 'donor']);
Suser->contacts()->attach([1, 2, 3]);
Suser->contacts()->attach([

1 => ['status' => 'donor'],

2,

3
D;

Suser->contacts()->detach(1);
Suser->contacts()->detach([1, 2]);
Suser->contacts()->detach(); // Detaches all contacts

You can also use updateExistingPivot() to make changes just to the pivot record:

Suser->contacts()->updateExistingPivot(Scontactld, [
'status' => 'inactive'
1;
And if youd like to replace the current relationships, effectively detaching all previous
relationships and attaching new ones, you can pass an array to sync():
Suser->contacts()->sync([1, 2, 31);

Suser->contacts()->sync([
1 => ['status' => 'donor'],

Introduction to Eloquent | 185

2;
3
D;

Getting data from the pivot table. One thing that’s unique about many to many is that
it’s our first relationship that has a pivot table. The less data you have on a pivot table,
the better, but there are some cases where it’s valuable to store information on your
pivot table—for example, you might want to store a created_at field to see when this
relationship was created.

In order to store these fields, you have to add them to the relationship definition, like
in Example 8-41. You can define specific fields using withPivot() or add created_at
and updated_at timestamps using withTimestamps().

Example 8-41. Adding fields to a pivot record

public function contacts()

{
return $this->belongsToMany(Contact::class)
->withTimestamps()
->withPivot('status', 'preferred_greeting');
1

When you get a model instance through a relationship, it will have a pivot property
on it, which will represent its place in the pivot table you just pulled it from. So, you
can do something like Example 8-42.

Example 8-42. Getting data from a related item’s pivot entry
Suser = User::first();

Suser->contacts->each(function (Scontact) {
echo sprintf(
'Contact associated with this user at: %s',
Scontact->pivot->created_at
);
b

Polymorphic

Remember, our polymorphic relationship is where we have multiple Eloquent classes
corresponding to the same relationship. We're going to use Stars (like favorites) right
now. A user can star both Contacts and Events, and that’s where the name polymor-
phic comes from: a single interface to objects of multiple types.

186 | Chapter 8: Database and Eloquent

So, we'll need three tables, and three models: Star, Contact, and Event (and, of
course, User, but we'll get there in a second). The contacts and events tables
will just be as they normally are, and the stars table will contain an 1id field, a starra
ble_id, and a starrable_type. For each Star, you'll be defining which “type” (e.g.,
Contact or Event) and which ID of that type (e.g., 1) it is.

Let’s create our models, as seen in Example 8-43.

Example 8-43. Creating the models for a polymorphic starring system

class Star extends Model

{
public function starrable()
{
return $this->morphsTo();
}
}
class Contact extends Model
{
public function stars()
{
return $this->morphMany(Star::class, 'starrable');
}
}
class Event extends Model
{
public function stars()
{
return $this->morphMany(Star::class, 'starrable');
}
}

So, how do we create a Star?

$contact = Contact::first();
Scontact->stars()->create();

It’s that easy. The Contact is now starred.

In order to find all of the Stars on a given Contact, we call the stars() method like
in Example 8-44.

Example 8-44. Retrieving the instances of a polymorphic relationship
Scontact = Contact::first();

Scontact->stars->each(function ($star) {

Introduction to Eloquent | 187

// Do stuff
b

If we have an instance of Star, we can get its target by calling the method we used to
define its morphTo(), which in this context is starrable(). Take a look at
Example 8-45.

Example 8-45. Retrieving the target of polymorphic instance

$stars = Star::all();

$stars->each(function (Sstar) {
var_dump(S$Sstar->starrable); // An instance of Contact or Event

s

Finally, you might be wondering, “What if I care who starred this contact?” That’s a
great question; of course you do. It’s as simple as adding user_1id to your stars table,
and then setting up that a User has many Stars and a Star belongs to_ one User—a
one-to-many relationship (Example 8-46). The stars table becomes almost a pivot
table between your User and your Contacts and Events.

Example 8-46. Extending a polymorphic system to differentiate by user

class Star extends Model

{
public function starrable()
{
return $this->morphsTo;
}
public function user()
{
return $this->belongsTo(User::class);
}
}
class User extends Model
{
public function stars()
{
return $this->hasMany(Star::class);
}
}

That’s it! You can now run $star->user or Suser->stars to find a list of a User’s
Stars or to find the starring User from a Star. Also, when you create a new Star,
you’ll now want to pass the User:

188 | Chapter 8: Database and Eloquent

Suser = User::first();
Sevent = Event::first();
Sevent->stars()->create(['user_id' => Suser->id]);

Many to many polymorphic

The most complex and least common of the relationship types, many-to-many poly-
morphic relationships are like polymorphic relationships, except instead of being one
to many they’re many to many.

The most common example for this relationship type is the tag, so I'll keep it safe and
use that as our example. Let’s imagine you want to be able to tag Contacts and
Events. The uniqueness of many-to-many polymorphism is that it’s many to many:
each tag may be applied to multiple items, and each tagged item might have multiple
tags. And to add to that, it’s polymorphic: tags can be related to items of several dif-
ferent types. For the database, we'll start with the normal structure of the polymor-
phic relationship but also add a pivot table.

This means we'll need a contacts table, an events table, and a tags table, all shaped
like normal with an ID and whatever properties you want, and a new taggables
table, which will have a tag_1id, a taggable_id, and a taggable_type. Each entry
into the taggables table will relate a tag with one of the taggable content types.

Now let’s define this relationship on our models, as seen in Example 8-47.

Example 8-47. Defining a polymorphic many-to-many relationship

class Contact extends Model

{
public function tags()
{
return $this->morphToMany(Tag::class, 'taggable');
}
}
class Event extends Model
{
public function tags()
{
return $this->morphToMany(Tag::class, 'taggable');
}
}
class Tag extends Model
{
public function contacts()
{
return $this->morphedByMany(Contact::class, 'taggable');
}

Introduction to Eloquent | 189

public function events()

{
}

return $this->morphedByMany(Event::class, 'taggable');

}

Here’s how to create your first tag:

$tag = Tag::firstOrCreate(['name' => 'likes-cheese']);
Scontact = Contact::first();
$contact->tags()->attach($tag->id);

We get the results of this relationship like normal, as seen in Example 8-48.

Example 8-48. Accessing the related items from both sides of a many-to-many
polymorphic relationship

Scontact = Contact::first();

Scontact->tags->each(function ($tag) {
// Do stuff

s

Stag = Tag::first();

Stag->contacts->each(function ($contact) {

// Do stuff
b

Child Records Updating Parent Record Timestamps

Remember, any Eloquent models by default will have created_at and updated_at
timestamps. Eloquent will set the updated_at timestamp automatically any time you

make any changes to a record.

When a related item either belongsTo() or belongsToMany() another item, it might
be valuable to mark the other item as updated any time the related item is updated.
For example, if a PhoneNumber is updated, the Contact it’s connected to should be

marked as having been updated as well.

We can accomplish this by adding the method name for that relationship to a

$touches array property on the child class, as in Example 8-49.

Example 8-49. Updating a parent record any time the child record is updated

class PhoneNumber extends Model

{

protected $touches = ['contact'];

190 | Chapter 8: Database and Eloquent

public function contact()

{

return $this->belongsTo(Contact::class);

}

Eager loading

By default, Eloquent loads relationships using “lazy loading” This means when you
first load a model instance, its related models will not be loaded along with it. Rather,
they’ll only be loaded if you make a separate call to pull them in; they’re “lazy” and
don’t do any work until called upon.

This can become a problem if you're iterating over a list of model instances and each
has a related item (or items) that youre working on. The problem with lazy loading is
that it can introduce significant database load (often the N+1 problem, if youre famil-
iar with the term; if not, just ignore this parenthetical remark). For instance, every
time the loop in Example 8-50 runs, it executes a new database query to look up the
PhoneNumber for that Contact.

Example 8-50.
Scontacts = Contact::all();

foreach (Scontacts as Scontact) {
foreach ($contact->phone_numbers as $phone_number) {
echo $phone_number->number;
}
}

If you are loading a model instance and you know you’ll be working with its relation-
ships, you can instead choose to “eager-load” one or many of its sets of related items:

$contacts = Contact::with('phoneNumbers')->get();

Using the with() method with a retrieval gets all of the items related to the pulled
item(s), and as you can see in this example, you pass it the name of the method the
relationship is defined by.

When we use eager loading, instead of pulling the related items one at a time when
theyre requested (selecting one phone number each time a foreach loop runs), we
have a single query to pull the initial items (selecting all contacts) and a second query
to pull all their related items (selecting all phone numbers owned by the contacts we
just pulled).

You can eager-load multiple relationships by passing multiple parameters to the
with() call:

$contacts = Contact::with('phoneNumbers', 'addresses')->get();

Introduction to Eloquent | 191

And you can nest eager loading to eager-load the relationships of relationships:

Sauthors = Author::with('posts.comments')->get();

Constraining eager loads. If you want to eager-load a relationship, but not all of
the items, you can pass a closure to with() to define exactly which related items to
eager-load:

Scontacts = Contact::with(['addresses' => function ($query) {

$Squery->where('mailable', true);

) ->get();

Lazy eager loading. I know it sounds crazy, because we just defined eager loading as
sort of the opposite of lazy loading, but sometimes you don’t know you want to per-
form an eager-load query until after the initial instances have been pulled. You can
still perform an eager load after the fact, with lazy eager loading:

Scontacts = Contact::all();

if ($showPhoneNumbers) {
$contacts->load('phoneNumbers');

}

Eager loading only the count

If you want to eager-load relationships but only so you can have access to the count of
items in each relationship, you can try withCount():

Sauthors = Author::withCount('posts')->get();

// adds a "posts_count" integer to each Author with a count of that
// Author's number of related posts

Eloquent Events

Eloquent models fire events out into the void of your application every time certain
actions happen, regardless of whether you're listening. If youre familiar with pub/
sub, it’s this same model (and you can learn more about Laravel’s entire event system
in Chapter 16).

Here’s a quick rundown of binding a listener to when a new Contact is created. We're
going to bind it in the boot() method of AppServiceProvider, and let’s imagine
we're notifying a third-party service every time we create a new Contact.

Example 8-51. Binding a listener to an Eloquent event

class AppServiceProvider extends ServiceProvider

{
public function boot()

192 | Chapter 8: Database and Eloquent

SthirdPartyService = new SomeThirdPartyService;

Contact::creating(function ($contact) use ($thirdPartyService) {

try {
SthirdPartyService->addContact($contact);
} catch (Exception Se) {
Log::error('Failed adding contact to ThirdPartyService; cancelled.');

return false;

}
s
}

We can see a few things in Example 8-51. First, we use Modelname: :eventName() as
the method, and pass it a closure. The closure gets access to the model instance that is
being operated on. Second, we're going to need to define this listener in a service pro-
vider somewhere. And third, if we return false, the operation will cancel and the
save() or update() will be cancelled.

Here are the events that every Eloquent model fires:

e creating
e created

e updating
e updated

e saving

« saved

o deleting
o deleted

e restoring

e restored

Most of these should be pretty clear, except possibly restoring and restored, which
fire when you're restoring a soft-deleted row. Also, saving is fired for both creating
and updating and saved is fired for both created and updated.

Testing

Laravel’s entire application testing framework makes it easy to test your database—
not by writing unit tests against Eloquent, but by just being willing to test your entire
application.

Testing | 193

Take this scenario. You want to test to ensure that a particular page shows one contact
but not another. Some of that logic has to do with the interplay between the URL and
the controller and the database, so the best way to test it is an application test. You
might be thinking about mocking Eloquent calls and trying to avoid the system hit-
ting the database. Don’t do it. Try Example 8-52 instead.

Example 8-52. Testing database interactions with simple application tests

public function test_active_page_shows_active_and_not_inactive_contacts()

{
SactiveContact = factory(Contact::class, 'active')->create();
$inactiveContact = factory(Contact::class, 'inactive')->create();

Sthis->visit('active-contacts')
->see($activeContact->name)
->dontSee($inactiveContact->name);

}

As you can see, model factories and Laravel’s application testing features are great for
testing database calls.

Alternatively, you can look for that record directly in the database, as in
Example 8-53.

Example 8-53. Using seeInDatabase() to check for certain records in the database

public function test_contact_creation_works()

{
$this->post('contacts', [
'email' => 'jim@bo.com'
s
$this->seeInDatabase('contacts', [
'email' => 'jim@bo.com'
s
}

Eloquent and Laravel’s database framework are tested extensively. You don’t need to
test them. You don't need to mock them. If you really want to avoid hitting the data-
base, you can use a repository and then return unsaved instances of your Eloquent
models. But the most important message is, test the way your application uses your
database logic.

If you have custom accessors, mutators, scopes, or whatever else, you can also test
them directly, as in Example 8-54.

194 | Chapter 8: Database and Eloquent

Example 8-54. Testing accessors, mutators, and scopes

public function test_full_name_accessor_works()

{
$Scontact = factory(Contact::class)->make([
'first_name' => 'Alphonse',
'last_name' => 'Cumberbund'
D;
$this->assertEquals('Alphonse Cumberbund', Scontact->fullName);
}
public function test_vip_scope_filters_out_non_vips()
{
Svip = factory(Contact::class, 'vip')->create();
$nonVip = factory(Contact::class)->create();
Svips = Contact::vips()->get();
$this->assertTrue($vips->contains(['id' => Svip->id]));
S$this->assertFalse(Svips->contains(['id' => $nonVip->id]));
}

Just avoid writing tests that leave you creating complex “Demeter chains” to assert
that a particular fluent stack was called on some database mock. If your testing starts
to get overwhelming and complex around the database layer, it’s because you're allow-
ing preconceived notions to force you into unnecessarily complex systems. Keep
it simple.

TL;DR

Laravel comes with a suite of powerful database tools, including migrations, seeding,
an elegant query builder, and Eloquent, a powerful ActiveRecord ORM. Laravel’s
database tools don't require you to use Eloquent at all—you can access and manipu-
late the database with a thin layer of convenience without having to write SQL
directly. But adding an ORM, whether it’s Eloquent or Doctrine or whatever else, is
easy and can work neatly with Laravel’s core database tools.

Eloquent follows the Active Record pattern, which makes it simple to define a class of
database-backed objects, including which table they’re stored in, the shape of their
columns, accessors and mutators, and much more. Eloquent can handle every sort of
normal SQL action and also complex relationships, up to and including polymorphic
many-to-many relationships.

Laravel also has a robust system for testing databases, including model factories.

TLDR | 195

CHAPTER 9
User Authentication and Authorization

Setting up a basic user authentication system—including registration, login, sessions,
password resets, and access permissions—can often be one of the more time-
consuming pieces of creating the foundation of an application. It's a prime candidate
for extracting functionality out to a library, and there are quite a few such libraries.

But because of how much authentication needs vary across projects, most authentica-
tion systems grow bulky and unusable quickly. Thankfully, Laravel has found a way to
make an authentication system that’s easy to use and understand, but flexible enough
to fit in a variety of settings.

Every new install of Laravel has a create_users_table migration and a User model
built in out of the box. Laravel offers an Artisan make:auth command that seeds a
collection of authentication-related views and routes. And every install comes with
a RegisterController, a LoginController, a ForgotPasswordController, and a
ResetPasswordController. The APIs are clean and clear, and the conventions
all work together to provide a simple—and seamless—authentication and authoriza-
tion system.

Differences in auth structure in Laravel 5.3

E Note that in Laravel 5.1 and 5.2, most of this functionality lived
in the AuthController; in 5.3, this functionality has been split
out into multiple controllers. Many of the specifics we'll cover here
about how to customize redirect routes, auth guards, and such are
different in 5.1 and 5.2 (though all the core functionality is the
same). So, if youre on 5.1 or 5.2 and want to change some of the
default authentication behaviors, you'll likely need to dig a bit into
your AuthController to see how exactly you should customize it.

197

The User Model and Migration

When you create a new Laravel application, the first migration and model you’ll see
are the create_users_table migration and the App\User model. Example 9-1 shows,
straight from the migration, the fields you’ll get in your users table.

Example 9-1. Laravel’s default user migration

Schema: :create('users', function (Blueprint $table) {
Stable->increments('id");
$table->string('name');
Stable->string('email')->unique();
$table->string('password');
Stable->rememberToken();
Stable->timestamps();

b

We have an autoincrementing primary key ID, a name, a unique email, a password, a
“remember me” token, and created and modified timestamps. This covers everything
you need to handle basic user authentication in most apps.

The difference between authentication and authorization

Authentication means verifying who someone is, and allowing
them to act as that person in your system. This includes the login
and logout processes, and any tools that allow the users to identify
themselves during their time using the application.

Authorization means determining whether the authenticated user is
allowed (authorized) to perform a specific behavior. For example,
an authorization system allows us to forbid any nonadministrators
from viewing the site’s earnings.

The User model is a bit more complex, as you can see in Example 9-2. The App\User
class itself is simple, but it extends the Illuminate\Foundation\Auth\User class,
which pulls in several traits.

Example 9-2. Laravel’s default User model

<?php
// App\User

namespace App;

use Illuminate\Notifications\Notifiable;
use Illuminate\Foundation\Auth\User as Authenticatable;

198 | Chapter9: User Authentication and Authorization

class User extends Authenticatable

{

}

use Notifiable;

/'k*
* The attributes that are mass assignable.
*

* @var array
*/
protected $fillable = [
'name', 'email', 'password',

1;

/**
* The attributes excluded from the model's JSON form.

*

* @var array
*/
protected $Shidden = [
'password', 'remember_token',

1;

<?php
// Illuminate|Foundation\Auth\User

namespace Illuminate\Foundation\Auth;

use
use
use
use
use
use
use

IlTluminate\Auth\Authenticatable;

Illuminate\Database\Eloquent\Model;
ITluminate\Auth\Passwords\CanResetPassword;
Illuminate\Foundation\Auth\Access\Authorizable;
ITluminate\Contracts\Auth\Authenticatable as AuthenticatableContract;
Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;
Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

class User extends Model implements

AuthenticatableContract,
AuthorizableContract,
CanResetPasswordContract

use Authenticatable, Authorizable, CanResetPassword;

Eloquent model refresher

If this is entirely unfamiliar, consider reading Chapter 8 before
continuing to learn how Eloquent models work.

The User Model and Migration

199

So, what can we learn from this model? First, users live in the users table; Laravel will
infer this from the class name. We are able to fill out the name, email, and password
properties when creating a new user, and the password and remember_token proper-
ties are excluded when outputting the user as JSON. Looking good so far.

We also can see from the contracts and the traits in the Il1luminate\Foundation
\Auth version of User that there are some features in the framework (the ability to
authenticate, to authorize, and to reset passwords) that theoretically could be applied
to other models, not just the User model, and that could be applied individually
or together.

Contracts and Interfaces

You may have noticed that sometimes I write the word “contract” and sometimes
“interface,” and that almost all of the interfaces in Laravel are under the Contracts
namespace.

A PHP interface is essentially an agreement between two classes that one of the
classes will “behave” a certain way. It’s a bit like a contract between them, and thinking
about it as a contract gives a bit more inherent meaning to the name than calling it an
interface does.

In the end, though, they’re the same thing: an agreement that a class will provide cer-
tain methods with a certain signature.

On a related note, the Illuminate\Contracts namespace contains a group of inter-
faces that Laravel components implement and typehint. This makes it easy to develop
similar components that implement the same interfaces and swap them into your
application in place of the stock I1luminate components. When the Laravel core and
components typehint a mailer, for example, they dont typehint the Mailer class.
Instead, they typehint the Mailer contract (interface), making it easy to provide your
own mailer. To learn more about how to do this, take a look at Chapter 11.

The Authenticatable contract requires methods (getAuthIdentifier(), etc.) that
allow the framework to authenticate instances of this model to the auth system; the
Authenticatable trait includes the methods necessary to satisfy that contract with an
average Eloquent model.

The Authorizable contract requires methods (can(), cannot()) that allow the
framework to authorize instances of this model for their access permissions in differ-
ent contexts. Unsurprisingly, the Authorizable trait provides methods that will sat-
isfy the Authorizable contract for an average Eloquent model.

And finally, the CanResetPassword contract requires one method (getEmailForPass
wordReset()) that allows the framework to, you guessed it, reset the password of any

200 | Chapter9: User Authentication and Authorization

entity that satisfies this contract. The trait provides that method for an average Elo-
quent model.

At this point, we have the ability to easily represent an individual user in the database
(with the migration), and to pull them out with a model instance that can be authen-
ticated (logged in and out), authorized (checked for access permissions to a particular
resource), and sent a password reset email.

Using the auth() Global Helper and the Auth Facade

The auth() global helper is the easiest way to interact with the status of the authenti-
cated user throughout your app. You can also inject an instance of Il1luminate\Auth
\AuthManager and get the same functionality, or use the Auth facade.

The most common usages are to check whether a user is logged in (auth()->check()
returns true if the current user is logged in; auth()->guest() returns true if the user
is not logged in) and to get the currently logged-in user (use auth()->user(), or
auth()->1d() for just the ID; both return null if no user is logged in).

Take a look at Example 9-3 for a sample usage of the global helper in a controller.

Example 9-3. Sample usage of the auth() global helper in a controller

public function dashboard()

{
if (auth()->guest()) {
return redirect('sign-up');
}
return view('dashboard')
->with('user', auth()->user());
}

The Auth Controllers

So, how do we actually log users in? And how do we trigger those password resets?

It all happens in the Auth-namespaced controllers: RegisterController,
LoginController, ResetPasswordController, and ForgotPasswordController.

RegisterController

The RegisterController, in combination with the RegistersUsers trait, contains
sensible defaults for how to show new users a registration form, how to validate their
input, how to create new users once their input is validated, and where to redirect
them afterward.

Using the auth() Global Helper and the Auth Facade | 201

The controller itself just contains a few hooks that the traits will call at given points.
That makes it easy to customize a few common behaviors without having to dig
deeply into the code that makes it all work.

The $redirectTo property defines where users will be redirected after registration.
The validator() method defines how to validate registrations. And the create()
method defines how to create a new user based on an incoming registration. Take a
look at Example 9-4 to see the default RegisterController.

Example 9-4. Laravel’s default RegisterController

class RegisterController extends Controller

{
use RegistersUsers;
protected SredirectTo = '/home';
protected function validator(array $data)
{
return Validator::make($data, [
'name' => 'required|max:255',
'email' => 'required|email|max:255|unique:users’,
'password' => 'required|min:6|confirmed’,
s
}
protected function create(array $data)
{
return User::create([
'name' => $data['name'],
'email' => Sdata['email'],
'password' => bcrypt($data['password']),
IDH
}
}

RegistersUsers trait

The RegistersUsers trait, which the RegisterController imports, handles a few
primary functions for the registration process. First, it shows users the registration
form view, with the showRegistrationForm() method. If you want new users to reg-
ister with a view other than auth.register you can override the showRegistration
Form() method in your RegisterController.

202 | Chapter9: User Authentication and Authorization

Next, it handles the POST of the registration form with the register() method. This
method passes the user’s registration input to the validator from the validator()
method of your RegisterController, and then on to the create() method.

And finally, the redirectPath() method (pulled in via the RedirectsUsers trait)
defines where users should be redirected after a successful registration. You can
define this URI with the redirectTo property on your controller, or you can override
the redirectPath() method and return whatever you want.

If you want this trait to use a different auth guard than the default (you’ll learn more
about guards in “Guards” on page 209), you can override the auth() method and
have it return whichever guard youd like.

LoginController

The LoginController, unsurprisingly, allows the user to log in. It brings in the
AuthenticatesUsers trait, which brings in the RedirectsUsers and
ThrottlesLogins traits.

Like the RegistrationController, the LoginController has a $redirectTo prop-
erty that allows you to customize the path the user will be redirected to after a suc-
cessful login. Everything else lives behind the AuthenticatesUsers trait.

AuthenticatesUsers trait

The AuthenticatesUsers trait is responsible for showing users the login form, vali-
dating their logins, throttling failed logins, handling logouts, and redirecting users
after a successful login.

The showLoginForm() method defaults to showing the user the auth.login view, but
you can override it if youd like it to use a different view.

The login() method accepts the POST from the login form. It validates the request
using the validateLogin() method, which you can override if youd like to custom-
ize the validation. It then hooks into the functionality of the ThrottlesLogins trait,
which we'll cover shortly, to reject users with too many failed logins. And finally, it
redirects the user, either to her intended path (if the user was redirected to the login
page when attempting to visit a page within the app) or to the path defined by the
redirectPath() method, which returns your $redirectTo property.

The trait calls the empty authenticated() method after a successful login, so if youd
like to perform any sort of behavior in response to a successful login, just override
this method in your LoginController.

The Auth Controllers | 203

There’s a username() method that defines which of your users columns is the “user-
name”; this defaults to email but you can change that by overwriting the username()
method in your controller to return the name of your username column.

And, like in the RegistersUsers trait, you can override the guard() method to
define which auth guard (more on that in “Guards” on page 209) this controller
should use.

ThrottlesLogins trait

The ThrottlesLogins trait is an interface to Laravel's Illuminate\Cache
\RateLimiter class, which is a utility to rate-limit any event using the cache. This
trait applies rate limiting to user logins, limiting users from using the login form if
they’ve had too many failed logins within a certain amount of time. This functionality
does not exist in Laravel 5.1.

If you import the ThrottlesLogins trait, all of its methods are protected, which
means they can't actually be accessed as routes. Instead, the AuthenticatesUsers
trait looks to see whether you've imported the ThrottlesLogins trait, and if so, it'll
attach its functionality to your logins without any work on your part. Since the

default LoginController imports both, you'll get this functionality for free if you use
the auth scaffold.

ThrottlesLogins limits any given combination of username and IP address to 5
attempts per 60 seconds. Using the cache, it increments the “failed login” count of a
given username/IP address combination, and if any user reaches 5 failed login
attempts within 60 seconds, it redirects that user back to the login page with an
appropriate error until the 60 seconds is over.

ResetPasswordController

The ResetPasswordController simply pulls in the ResetsPasswords trait. This trait
provides validation and access to basic password reset views, and then uses an
instance of Laravel's PasswordBroker class (or anything else implementing the
PasswordBroker interface, if you choose to write your own) to handle sending pass-
word reset emails and actually resetting the passwords.

Just like the other traits we've covered, it handles showing the reset password view
(showResetForm() shows the auth.passwords.reset view), and the POST request
that is sent from that view (reset() validates and sends the appropriate response).
The resetPassword() method actually resets the password, and you can customize
the broker with broker() and the auth guard with guard().

204 | Chapter9: User Authentication and Authorization

If you're interested in customizing any of this behavior, just override the specific
method you want to customize in your controller.

ForgotPasswordController

The ForgotPasswordController simply pulls in the SendsPasswordResetEmails
trait. It shows the auth.passwords.email form with the showLinkRequestForm()
method, and handles the POST of that form with the sendResetLinkEmail() method.
You can customize the broker with the broker () method.

Auth::routes()

Now that we have the auth controllers providing some methods for a series of pre-
defined routes, we’ll want our users to actually be able to hit those routes. We could
add all these routes manually to routes/web.php, but there’s already a convenience tool
for that, called Auth: :routes():

// routes/web.php
Auth: :routes();

As you can probably guess, Auth: :routes() brings in a bundle of predefined routes
to your routes file. In Example 9-5 you can see the routes that are actually being
defined there.

Example 9-5. The routes provided by Auth::routes()

// Authentication Routes

$this->get('login', 'Auth\LoginController@showLoginForm');
S$this->post('login', 'Auth\LoginController@login');
$this->post('logout', 'Auth\LoginController@logout');

// Registration Routes
S$this->get('register', 'Auth\RegisterController@showRegistrationForm');
$this->post('register', 'Auth\RegisterController@register');

// Password Reset Routes

$this->get('password/reset', 'Auth\ForgotPasswordController@showLinkRequestForm');
Sthis->post('password/email', 'Auth\ForgotPasswordController@sendResetLinkEmail');
Sthis->get('password/reset/{token}', 'Auth\ResetPasswordController@showResetForm');
$this->post('password/reset', 'Auth\ResetPasswordController@reset');

Basically, Auth::routes() includes the routes for authentication, registration, and
password resets.

Authzroutes() | 205

Laravel’s Controller/Method Reference Syntax

Laravel has a convention for how to refer to a particular method in a given controller:
ControllerName@methodName. Sometimes this is just a casual communication con-
vention, but it’s also used in real bindings, like in Example 9-5. Laravel parses what’s
before and after the @ and uses those segments to identify the controller and method.

The Auth Scaffold

At this point you have a migration, a model, controllers, and routes for your authenti-
cation system. But what about your views?

Laravel handles that by providing an auth scaffold (new in Laravel 5.2), which is
intended to be run on a new application and provide you with even more skeleton
code to get your auth system running quickly.

The auth scaffold takes care of adding Auth::routes() to your routes file, adds a
view for each route, and creates a HomeController to serve as the landing page

for logged-in users; it also routes to the index() method of HomeController at
the /home URL

Just run php artisan make:auth, and the following files will be made available
to you:

app/Http/Controllers/HomeController.php
resources/views/auth/login.blade.php
resources/views/auth/register.blade.php
resources/views/auth/passwords/email.blade.php
resources/views/auth/passwords/reset.blade.php
resources/views/layouts/app.blade.php
resources/views/home.blade.php

At this point, you have / returning the welcome view, /home returning the home view,
and a series of auth routes for login, logout, registration, and password reset pointing
to the auth controllers. Each of the seeded views has Bootstrap-based layouts and
form fields for all necessary fields for login, registration, and password reset, and they
already point to the correct routes.

At this point, you have all of the pieces in place for every step of the normal user reg-
istration and authentication flow. You can tweak all you want, but youre entirely
ready to register and authenticate users.

Let’s review quickly the steps from new site to full authentication system:

laravel new MyApp
cd MyApp

206 | Chapter9: User Authentication and Authorization

php artisan make:auth

php artisan migrate
That’s it. Run those commands, and you will have a landing page and a bootstrap-
based user registration, login, logout, and password reset system, with a basic landing
page for all authenticated users.

“Remember Me”

The auth scaffold has this implemented out of the box, but it’s still worth learning
how it works and how to use it on your own. If you want to implement a “remember
me”-style long-lived access token, make sure you have a remember_token column on
your users table (which you will if you used the default migration).

When you’re normally logging in a user (and this is how the LoginController does
it, with the AuthenticatesUsers trait), you'll “attempt” an authentication with the
user-provided information, like in Example 9-6.

Example 9-6. Attempting a user authentication

if (auth()->attempt([
'email' => request()->input('email'),
'password' => request()->input('password")
M A{
// Handle the successful login

}

This provides you with a user login that lasts as long as the user’s session. If you want
Laravel to extend the login indefinitely using cookies (as long as the user is on the
same computer and doesn’t log out), you can pass a boolean true as the second
parameter of the auth()->attempt() method. Take a look at Example 9-7 to see what
that request looks like.

Example 9-7. Attempting a user authentication with a “remember me” checkbox check

if (auth()->attempt([
'email' => request()->input('email'),
'password' => request()->input('password")
1), request()->has('remember')) {
// Handle the successful login

}

You can see that we checked whether the input has a remember property, which will
return a boolean. This allows our users to decide if they want to be remembered with
a checkbox in the login form.

“Remember Me” | 207

And later, if you need to manually check whether the current user was authenticated
by a remember token, there’s a method for that: auth()->viaRemember() returns a
boolean indicating whether or not the current user authenticated via a remember
token. This will allow you to prevent certain higher-sensitivity features from being
accessible by remember token, and you can require users to reenter their passwords.

Manually Authenticating Users

The most common case for user authentication is that you’ll allow the users to pro-
vide their credentials, and then use auth()->attempt() to see whether the provided
credentials match any real users. If so, you log them in.

But sometimes there are contexts where it’s valuable for you to be able to choose
to log a user in on your own. For example, you may want to allow admin users to
switch users.

There are two methods that make this possible. First, you can just pass a user ID:
auth()->loginUsingId(5);

Second, you can pass a User object (or any other object that implements the I1lumi
nate\Contracts\Auth\Authenticatable contract):

auth()->login(Suser);

Auth Middleware

In Example 9-3, we saw how to check whether visitors are logged in and redirect
them if not. You could perform these sorts of checks on every route in your applica-
tion, but it would very quickly get tedious. It turns out that route middleware (see
Chapter 10 to learn more about how they work) are a perfect fit for restricting certain
routes to guests or to authenticated users.

Once again, Laravel comes with the middleware we need to do this out of the box.
You can see which route middleware you have defined in App\Http\Kernel:

protected $routeMiddleware = [
'auth' => \Illuminate\Auth\Middleware\Authenticate::class,
'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,
'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,
'can' => \Illuminate\Auth\Middleware\Authorize::class,
'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,
"throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,
1;

208 | Chapter9: User Authentication and Authorization

Three of the default route middleware are authentication-related: auth restricts route
access to authenticated users, auth.basic restricts access to authenticated users using
HTTP Basic Authentication, and guest restricts access to unauthenticated users. can
is used for authorizing user access to given routes.

It's most common to use auth for your authenticated-user-only sections and guest
for any routes you don’t want authenticated users to see (like the login form).
auth.basic is a much less commonly used middleware for authenticating via request
headers.

Example 9-8 shows a few sample routes protected by the auth middleware.

Example 9-8. Sample routes protected by auth middleware

Route: :group(['middleware' => 'auth'], function () {
Route::get('account', 'AccountController@dashboard');

s

Route::get('login', 'Auth\LoginController@getLogin')->middleware('guest"');

Guards

Every aspect of Laravel’s authentication system is routed through something called
a guard. Each guard is a combination of two pieces: a driver that defines how it per-
sists and retrieves the authentication state (for example, session), and a provider that
allows you to get a user by certain criteria (for example, users).

Out of the box Laravel has two guards: web and api. web is the more traditional
authentication style, using the session driver and the basic user provider. api also uses
the same user provider, but it uses the token driver instead of the session to authenti-
cate each request.

Youd change drivers if you wanted to handle the identification and persistence of
a user’s identity differently (for example, changing from a long-running session to a
provided-every-page-load token), and youd change providers if you wanted to
change the storage type or retrieval methods for your users (for example, moving to
storing your users in Mongo instead of MySQL).

Changing the Default Guard

The guards are defined in config/auth.php, and you can change them, add new
guards, and also define which guard will be the default there.

The default guard will be that which is used any time you use any auth features.
auth()->user() will pull the currently authenticated user using the default guard.

Guards | 209

You can change this guard by changing the auth.defaults.guard setting in config/
auth.php:
'defaults' => [
'guard' => 'web', // Change the default here

'passwords' => 'users',

1
If youre using Laravel 5.1, you'll notice that the structure of the authentication infor-

mation is a little different from this. Don’t worry; the features all still work the same,
they’re just structured differently.

Configuration conventions

You may have noticed that I refer to configuration sections with
references like auth.defaults.guard. What that translates to is: in
config/auth.php, in the array section keyed defaults, there should
be a property keyed guard. That one is auth.defaults.guard.

Using Other Guards Without Changing the Default

If you want to use another guard, but not change the default, you can start your Auth
calls with guard():

SapiUser = auth()->guard('api')->user();

This will, just for this call, get the current user using the api guard.

Adding a New Guard

You can add a new guard at any time in config/auth.php, in the auth.guards setting:
'quards' => [
"trainees' => [
'driver' => 'session',
'provider' => 'trainees',
] 1
1
As you can see here, we've created a new guard (in addition to web and api) named
trainees. Let’s imagine, for the rest of this section, that were building an app where
our users are physical trainers and they each have their own users—trainees—who
can log in to their subdomains. So, we need a separate guard for them.

The only two options for driver are token and session. Out of the box, the only
option for provider is users, but you can create your own provider easily.

210 | Chapter9: User Authentication and Authorization

Creating a Custom User Provider

Just below where the guards are defined in config/auth.php, there’s an auth.provid
ers section that defines the available providers. Lets create a new provider named
tratinees:
'providers' => [
'users' => [
'driver' => 'eloquent',

'model' => App\User::class,

1

"trainees' => [
'driver' => 'eloquent',
'model' => App\Trainee::class,
1.
1.
The two options for driver are eloquent and database; if you use eloquent, you'll
need a model property that contains an Eloquent class name (the model to use for
your User class), and if you use database, you'll need a table property to define
which table it should authenticate against.

In our example, you can see that this application has a User and a Trainee, and they
need to be authenticated separately. This way, the code can differentiate between
auth()->quard(users) and auth()->guard(trainees).

One last note: the auth route middleware can take a parameter that is the guard
name. So, you can guard certain routes with a specific guard:

Route: :group(['middleware' => 'auth:trainees'], function () {
// Trainee-only routes here

s

Custom User Providers for Nonrelational Databases

The user provider creation flow just described still relies on the same UserProvider
class, which means it’s expecting to pull the identifying information out of a relational
database. But if you're using Mongo or Riak or something similar, you'll actually need
to create your own class.

To do this, create a new class that implements the I1luminate\Contracts\Auth\User
Provider interface, and then bind it in AuthServiceProvider@boot:

auth()->provider('riak', function ($app, array S$config) {
// Return an instance of Illuminate|Contracts|\Auth\UserProvider...
return new RiakUserProvider(Sapp['riak.connection']);

s

Guards | 21

Auth Events

We'll talk more about events in Chapter 16, but Laravel’s event system is a basic
pub/sub framework. There are system- and user-generated events that are broadcast,
and the user has the ability to create event listeners that do certain things in response
to certain events.

So, what if you wanted to send a ping to a particular security service every time a user
was locked out after too many failed login attempts? Maybe this service watches out
for a certain number of failed logins from certain geographic regions, or something
else. You could, of course, inject a call in the appropriate controller. But with events,
you can just create an event listener that listens to the “user locked out” event, and
register that.

Take a look at Example 9-9 to see all of the events that the authentication system
emits.

Example 9-9. Authentication events generated by the framework

protected $listen = [
'Illuminate\Auth\Events\Attempting' => [],
'Illuminate\Auth\Events\Login' => [],
'Illuminate\Auth\Events\Logout' => [],
'Illuminate\Auth\Events\Lockout' => [],

IH

As you can see, there are listeners for “user attempting login,” “successful login,” “log-
out,” and “lockout” To learn more about how to build event listeners for these events,
check out Chapter 16.

Authorization (ACL) and Roles

Finally, let’s cover Laravel’s authorization system. It enables you to determine whether
a user is authorized to do a particular thing, which you’ll check using a few primary
verbs: can, cannot, allows, and denies. The access control list (ACL) system is new
in Laravel 5.2.

Most of this authorization control will be performed using the Gate facade, but there
are also convenience helpers in your controllers, on the User model, as middleware,
and available as Blade directives. Take a look at this example to get a taste of what
we'll be able to do:

if (Gate::denies('edit', $Scontact)) {
abort(403);
}

if (! Gate::check('create', Contact::class)) {

212 | Chapter9: User Authentication and Authorization

abort(403);
}

Defining Authorization Rules

The default place to define authorization rules is the boot() method of the AuthServi
ceProvider. It should already have an instance of Illuminate\Contracts\Auth
\Access\Gate (aliased as GateContract) typehinted and injected as $gate.

An authorization rule is called an ability, and is comprised of two things: a string key
(e.g., update-contact) and a closure that returns a boolean. Example 9-10 shows an
ability for updating a contact.

Example 9-10. Sample ability for updating a contact

class AuthServiceProvider extends ServiceProvider

{
public function boot(GateContract S$gate)
{
Sthis->registerPolicies(S$Sgate);
$Sgate->define('update-contact', function (Suser, S$contact) {
return $user->id === $contact->user_1id;
Hs
}
}

Let’s walk through the steps for defining an ability.

First, you want to define a key. In naming this key, you should consider what string
makes sense in your code’s flow to refer to the ability you're providing the user. You
can see the code sample uses the convention {verb}-{modelName}: create-contact,
update-contact, etc.

Second, you define the closure. The first parameter will be the currently authenticated
user, and all parameters after that will be the object(s) you're checking for access to—
in this instance, the contact.

So, given those two objects, we can check whether the user is authorized to update
this contact. You can write this logic however you want, but in the app were looking
at at the moment, authorization depends on being the creator of the contact row. The
closure will return true (authorized) if the current user created the contact, and
false (unauthorized) if not.

Just like with route definitions, you could also use a class and method instead of a
closure to resolve this definition:

$gate->define('update-contact', 'ContactACLChecker@updateContact');

Authorization (ACL) and Roles | 213

The Gate Facade (and Injecting Gate)

Now that you've defined an ability, it’s time to test against it. The simplest way is to
use the Gate facade, as in Example 9-11 (or you can inject an instance of I1luminate
\Contracts\Auth\Access\Gate).

Example 9-11. Basic Gate facade usage

if (Gate::allows('update-contact', Scontact)) {
// Update contact

}

// or...

if (Gate::denies('update-contact', S$contact)) {
abort(403);

}

You might also define an ability with multiple parameters—maybe a contact can be in
groups, and you want to authorize whether the user has access to add a contact to a
group. Example 9-12 shows how to do this.

Example 9-12. Abilities with multiple parameters

// Definition
$Sgate->define('add-contact-to-group', function (Suser, $contact, Sgroup) {

return $Suser->id === S$contact->user_id && Suser->id === $group->user_id;
H;
// Usage
if (Gate::denies('add-contact-to-group', [Scontact, $group])) {
abort(403);
}

And if you need to check authorization for a user other than the currently authentica-
ted user, try forUser (), like in Example 9-13.
Example 9-13. Specifying the user for Gate

if (Gate::forUser($user)->denies('create-contact')) {
abort(403);
}

The Authorize Middleware

If you want to authorize entire routes, you can use the Authorize middleware (which
has a shortcut of can), like in Example 9-14.

214 | Chapter9: User Authentication and Authorization

Example 9-14. Using the Authorize middleware

Route::get('people/create', function () {
// Create person...
})->middleware('can:create-person');

Route::get('people/{person}/edit', function () {
// Create person...
})->middleware('can:create,person');

Here, the {person} parameter (whether it’s defined as a string or as a bound route
model) will be passed to the ability method as an additional parameter.

Controller Authorization

The parent App\Http\Controllers\Controller class in Laravel imports the Authori
zesRequests trait, which provides three methods for authorization: authorize(),
authorizeForUser(), and authorizeResource().

authorize() takes an ability key and an object (or array of objects) as parameters,
and if the authorization fails, it'll quit the application with a 403 (Unauthorized) sta-
tus code. That means this feature can turn three lines of authorization code into just
one, as you can see in Example 9-15.

Example 9-15. Simplifying controller authorization with authorize()

// From this:
public function show($contactId)

{
Scontact = Contact::findOrFail(ScontactId);
if (Gate::cannot('update-contact', S$contact)) {
abort(403);
}
}
// To this:
public function show($contactlId)
{
Scontact = Contact::findOrFail(ScontactId);
Sthis->authorize('update-contact', $contact);
}

authorizeForUser() is the same, but allows you to pass in a User object instead of
defaulting to the currently authenticated user:

Sthis->authorizeForUser(Suser, 'update-contact', S$contact);

Authorization (ACL) and Roles | 215

authorizeResource(), called once in the controller constructor, maps a predefined
set of authorization rules to each of the RESTful controller methods in that controller
—something like Example 9-16.

Example 9-16. The authorization-to-method mappings of authorizeResource()

class ContactsController extends Controller

{

public function __construct()

{
// This call does everything you see in the methods below.
// If you put this here, you can remove all authorize
// calls in the individual resource methods here.
$this->authorizeResource(Contact::class);

}

public function index()

{
S$this->authorize('view', Contact::class);

}

public function create()

{
Sthis->authorize('create', Contact::class);

}

public function store(Request $request)

{
Sthis->authorize('create', Contact::class);

}

public function show(Contact $contact)

{
Sthis->authorize('view', $contact);

}

public function edit(Contact $contact)

{
S$this->authorize('update', $contact);

}

public function update(Request $request, Contact $contact)

{
S$this->authorize('update', Scontact);

}

public function destroy(Contact $contact)

{
Sthis->authorize('delete', $contact);

216 | Chapter9: User Authentication and Authorization

}

Checking on the User Instance

If you're not in a controller, youre more likely to be checking the capabilities of a spe-
cific user than the currently authenticated user. That’s already possible with the Gate
facade using the forUser () method, but sometimes the syntax can feel a little off.

Thankfully, the Authorizable trait on the User class provides three methods to
make a more readable authorization feature: $user->can(), $user->cant(), and
$user->cannot(). As you can probably guess, cant() and cannot() do the same
thing, and can() is their exact inverse.

That means you can do something like Example 9-17.

Example 9-17. Checking authorization on a user instance
Suser = User::find(1);

if (Suser->can('create-contact')) {
// do something
}

Behind the scenes, these methods are just passing your params to Gate; in the preced-
ing example, Gate: : forUser ($user)->can('create-contact').

Blade Checks

Blade also has a little convenience helper: a @can directive. Example 9-18 illustrates
its usage.

Example 9-18. Using Blade’s @can directive

<nav>
Home
@can('edit-contact', $contact)
1d]) }}">Edit This Contact
@endcan
</nav>

You can also use @else in between @can and @endcan, and you can use @cannot and
@endcannot as in Example 9-19.

Authorization (ACL) and Roles | 217

Example 9-19. Using Blade’s @cannot directive

<h1>{{ $contact->name }}</h1>

@cannot('edit-contact', $contact)
LOCKED

@endcannot

Intercepting Checks

If you've ever built an app with an admin user class, you've probably looked at all of
the simple authorization closures so far in this chapter and thought about how you
could add a superuser class that overrides these checks in every case. Thankfully,
there’s already a tool for that.

In AuthServiceProvider, where youre already defining your abilities, you can also
add a before() check that runs before all the others and can optionally override
them, like in Example 9-20.

Example 9-20. Overriding Gate checks with before()

$Sgate->before(function (Suser, S$ability) {
if (Suser->isOwner()) {
return true;

}
s

Note that the string name for the ability is also passed in, so you can differentiate
your before hooks based on your ability naming scheme.

Policies

Up until this point, all of the access controls have required you to manually associate
Eloquent models with the ability names. You could have created an ability named
something like visit-dashboard that’s not related to a specific Eloquent model, but
you'll probably have noticed that most of our examples have had to do with doing
something to something—and in most of these cases, the something that’s the recipient
of the action is an Eloquent model.

Authorization policies are organizational structures that help you group your author-
ization logic based on the resource youre controlling access to. They make it easy to
manage defining authorization rules for behavior toward a particular Eloquent model
(or other PHP class), all together in a single location.

Generating policies
Policies are PHP classes, which can be generated with an Artisan command:

php artisan make:policy ContactPolicy

218 | Chapter9: User Authentication and Authorization

Once theyre generated, they need to be registered. The AuthServiceProvider has a
$policies property, which is an array. The key of each item is the class name of the
protected resource (usually, but not always, an Eloquent class), and the value is the
policy class name:

class AuthServiceProvider extends ServiceProvider

{
protected $policies = [
Contact::class => ContactPolicy::class,

]

A policy class that’s generated by Artisan doesn’t have any special properties or meth-
ods. But every method that you add is now mapped as an ability key for this object.

Let’s define an update() method to take a look at how it works (Example 9-21).

Example 9-21. A sample update() policy method
<?php
namespace App\Policies;

class ContactPolicy

{
public function update($user, $contact)
{
return $user->id === $contact->user_1id;
}
}

Notice that the contents of this method look exactly like they would in a Gate defini-
tion.

Policy methods that don't take an instance, before 5.3

E In Laravel 5.2, if you want to define a policy method that relates

to the class but not a specific instance—for example, “can this
user create contacts at all?” rather than just “can this user view this
specific contact?”—create that method and add “Any” at the end of
its name:

class ContactPolicy

{
public function createAny(S$user)
{
return $user->canCreateContacts();
}

In Laravel 5.3, you can drop the Any suffix and treat this just like a
normal method.

Authorization (ACL) and Roles | 219

Checking policies

If there’s a policy defined for a resource type, the Gate will use the first parameter
to figure out which method to check on your policy. If you run
Gate::allows('update', S$contact), it will check the ContactPolicy@update
method for authorization.

This also works for the Authorize middleware and for User model checking and
Blade checking, as seen in Example 9-22.

Example 9-22. Checking authorization against a policy

// Gate
if (Gate::denies('update', Scontact)) {
abort(403);

}

// Gate i1f you don't have an explicit instance

if (! Gate::check('create', Contact::class)) {
abort(403);

}

// User
if (Suser->can('update', Scontact)) {

// Do stuff
}

// Blade

@can('update', $contact)
<!-- show stuff -->

@endcan

Additionally, there’s a policy() helper that allows you to retrieve a policy class and
run its methods:

if (policy(Scontact)->update(Suser, Scontact)) {
// Do stuff
}

Overriding policies

Just like with normal ability definitions, policies can define a before() method that
allows you to override any call before it’s even processed (see Example 9-23).

Example 9-23. Overriding policies with the before() method

public function before(Suser, $ability)

{
if (Suser->isAdmin()) {
return true;

220 | Chapter9: User Authentication and Authorization

Passport and OAuth

There’s a Laravel package called Passport that makes it easy to set up your own OAuth
server as a part of your Laravel app. Take a look at “API Authentication with Laravel
Passport” on page 297 to learn more about how it works.

Testing

Application tests often need to perform a particular behavior on behalf of a particular
user. We therefore need to be able to authenticate as a user in application tests, and
we need to test authorization rules and authentication routes.

Of course, it’s possible to write an application test that manually visits the login page
and then fills out the form and submits it, but that’s not necessary. Instead, the sim-
plest option is to use the ->be() method to simulate being logged in as a user. Take a
look at Example 9-24.

Example 9-24. Authenticating as a user in application tests

public function test_1it_creates_a_new_contact()
{
Suser = factory(User::class)->create();
Sthis->be(Suser);

Sthis->post('contacts', [
'email' => 'my@email.com’

D;

$this->seeInDatabase('contacts', [
'email' => 'my@email.com',
'user_id' => Suser->id,
IDH
}

We can also test authorization like in Example 9-25.

Example 9-25. Testing authorization rules

public function test_non_admins_cant_create_users()
{
Suser = factory(User::class)->create([
'admin' => false
s
Sthis->be(Suser);

Testing | 221

Sthis->post('users', ['email' => 'my@email.com']);
Sthis->dontSeeInDatabase('users', [
'email' => 'my@email.com’
D;
}

Or we can test for a 403 response like in Example 9-26.

Example 9-26. Testing authorization rules by checking status code

public function test_non_admins_cant_create_users()

{
Suser = factory(User::class)->create([
'admin' => false
D;
Sthis->be(Suser);
$this->post('users', ['email' => 'my@email.com']);
$this->assertResponseStatus(403);
}

We need to test that our authentication (sign up and sign in) routes work too, as illus-
trated in Example 9-27.

Example 9-27. Testing authentication routes

public function test_users_can_register()

{
Sthis->post('register', [
'name' => 'Sal Leibowitz',
'email' => 'sal@leibs.net',
'password' => 'abcdefg123',
'password_confirmation' => 'abcdefg123',
s
S$this->followRedirects()->assertResponseOk();
$this->seeInDatabase('users', [
'name' => 'Sal Leibowitz',
'email' => 'sal@leibs.net',
D;
}

public function test_users_can_log_in()

{

Suser = factory(User::class)->create([
'password' => bcrypt('abcdefg123")
IDH

222 | Chapter9: User Authentication and Authorization

Sthis->post('login', [
'email' => Suser->email,
'password' => 'abcdefg123',
s

$this->followRedirects()->assertResponseOk();

$this->assertTrue(auth()->check());
}

You could also use the integration test features to direct the test to “click” your
authentication fields and “submit” the fields to test the entire flow.

TL;DR

Between the default User model, the create_users_table migration, the auth con-
trollers, and the auth scaffold, Laravel comes with a full user authentication system
out of the box. The RegisterController handles user registration, the LoginControl
ler handles user authentication, and the ResetPasswordController and the Forgot
PasswordController handle password resets. Each has certain properties and
methods that can be used to override some of the default behavior.

The Auth facade and the auth() global helper provide access to the current user
(auth()->user()) and makes it easy to check whether a user is logged in
(auth()->check() and auth()->guest()).

Laravel also has an authorization system built in that allows you to define specific
abilities (create-contact, visit-secret-page) or define policies for user interaction
with entire models.

You can check for authorization with the Gate facade, the ->can() and ->cannot()
methods on the User class, the @can and @cannot directives in Blade, the
->authorize() methods on the controller, or the can middleware.

TLDR | 223

CHAPTER 10
Requests and Responses

We've already covered the Illuminate Request object a bit—how you can typehint it
in constructors to get an instance, and then use that to get information about the
user’s input. In Chapter 3, for example, we saw how you can typehint it in construc-
tors to get an instance, and in Chapter 6 we looked at how you can use it to get infor-
mation about the user’s input.

In this chapter, we'll learn more about what that Request object is, how it’s generated
and what it represents, and what part it plays in your application’s lifecycle. We'll
also talk about the Response object and Laravel’s implementation of the middleware
pattern.

Laravel’s Request Lifecycle

Every request coming into a Laravel application, whether generated by an HTTP
request or a command-line interaction, is immediately converted into an Illuminate
Request object, which then crosses many layers and ends up being parsed by the
application itself. The application then generates an Illuminate Response object,
which is sent back out across those layers and finally returned to the end user.

This request/response lifecycle is illustrated in Figure 10-1.

Let’s take a look at what it takes to make each of these steps happen, from the first line
of code to the last.

Every Laravel application has some form of configuration set up at the web server
level, in an .htaccess file or an Nginx configuration setting or something similar, that
captures every web request regardless of URL and routes it to public/index.php in the
Laravel application directory (app).

225

Middleware

Request Response

Figure 10-1. Request/response lifecycle

Bootstrapping the Application
index.php doesn’t actually have that much code in it. It has three primary functions.

First, it loads Composer’s autoload file and Laravel’s compiled application cache,
which lives at bootstrap/cache/compiled.php. This file is what’s generated when you
run php artisan optimize, and it preloads all of the most commonly used classes
for faster loading.

Composer and Laravel

Laravel’s core functionality is separated into a series of components under the
Illuminate namespace, which are all pulled into each Laravel app using Composer.
Laravel also pulls in quite a few packages from Symfony and several other
community-developed packages. In this way, Laravel is just as much an opinionated
collection of components as it is a framework.

Next, it kicks off Laravel’s bootstrap, creating the application container (youll learn
more about the container in Chapter 11) and registering a few core services (includ-
ing the kernel, which we’ll talk about in just a bit).

Finally, it creates an instance of the kernel, creates a request representing the current
user's web request, and passes the request to the kernel to handle. The kernel
responds with an Illuminate Response object, which index.php then returns to the
end user, and terminates the page request.

Laravel’s kernel

The kernel is the core router of every Laravel application, responsible for taking in a
user request, processing it through middleware and handling exceptions and passing
it to the page router, and then returning the final response. There are actually two
kernels, but only one is used for each page request. One of the routers handles web
requests (the HTTP kernel) and the other handles console, cron, and Artisan requests

226 | Chapter 10: Requests and Responses

(the console kernel). Each has a handle() method thats responsible for taking in an
[Mluminate Request object and returning an Illuminate Response object.

The kernel runs all of the bootstraps that need to run before every request, including
determining which environment the current request is running in (staging, local, pro-
duction, etc.) and running all of the service providers. The HT TP kernel additionally
defines the list of middleware that will wrap each request, including the core middle-
ware responsible for sessions and CSRF protection.

Service Providers

While there’s a bit of procedural code in these bootstraps, almost all of Laravel’s boot-
strap code is separated into something Laravel calls service providers. A service pro-
vider is a class that encapsulates logic that various parts of your application need to
run in order to bootstrap their core functionality.

For example, there’s an AuthServiceProvider that bootstraps all of the registrations
necessary for Laravel’s authentication system and a RouteServiceProvider that boot-
straps the routing system.

The concept of service providers can be a little hard to understand at first, so think
about it this way: many components of your application have bootstrap code that
needs to run when the application initializes. Service providers are a tool for group-
ing that bootstrap code into related classes. If you have any code that needs to run
in preparation for your application code to work, it’s a strong candidate for a service
provider.

For example, if you ever find that the feature youre working on requires some classes
registered in the container (we'll learn more about this in Chapter 11), you would
create a service provider just for that piece of functionality. You might have a
GitHubServiceProvider or a MailerServiceProvider.

Service providers have two important methods: boot() and register(). There’s also
a $defer property that you might choose to use. Here’s how they work.

First, all of the service providers’ register() methods are called. This is where we
want to bind classes and aliases to the container. You don’t want to do anything in
register() that relies on the entire application being bootstrapped.

Second, all of the service providers’ boot() methods are called. You can now do any
other bootstrapping here, like binding event listeners or defining routes—anything
that may rely on the entire Laravel application having been bootstrapped.

If your service provider is only going to register bindings in the container (i.e., teach
the container how to resolve a given class or interface), but not perform any other
bootstrapping, you can “defer” its registrations, which means they won’t run unless

Laravel's Request Lifecycle | 227

one of their bindings is explicitly requested from the container. This can speed up
your application’s average time to bootstrap.

If you want to defer your service provider’s registrations, first give it a protected
$defer property and set it to true, and then give it a provides() method that returns
a list of bindings the provider provides, as shown in Example 10-1.

Example 10-1. Deferring the registration of a service provider

class GitHubServiceProvider extends ServiceProvider

{

protected S$defer = true;

public function provides()

{

return [
GitHubClient::class
1;

More uses for service providers

Service providers also have a suite of methods and configuration
options that can provide advanced functionality to the end user
when the provider is published as part of a Composer package.
Take a look at the service provider definition in the Laravel source
to learn more about how this can work.

Now that we've covered the application bootstrap, let’s take a look at the Request
object, the most important output of the bootstrap.

The Request Object

The Illuminate Request class is a Laravel-specific extension of Symfony’s HttpFounda
tion\Request object.

Symfony HttpFoundation

If youre not familiar with it, Symfony’s HttpFoundation suite of classes powers
almost every PHP framework in existence at this point; this is the most popular and
powerful set of abstractions available in PHP for representing HTTP requests,
responses, headers, cookies, and more.

228 | Chapter 10: Requests and Responses

http://bit.ly/2eQtW0s

Each Request object is intended to represent every relevant piece of information you
could care to know about a user’s HTTP request.

In native PHP code, you might find yourself looking to $_SERVER, $_GET, $_POST, and
other combinations of globals and processing logic to get information about the cur-
rent user’s request. What files has the user uploaded? What’s his IP address? What
fields did he post? All of this is sprinkled around the language—and your code—in a
way that’s hard to understand and harder to mock.

Symfony’s Request object instead collects all of the information necessary to repre-
sent a single HTTP request into a single object, and then tacks on convenience
methods to make it easy to get useful information from it. The Illuminate Request
object adds even more convenience methods to get information about the request
it’s representing.

Capturing a request

You’'ll very likely never need to do this in a Laravel app, but if you
ever need to capture your own Illuminate Request directly from
PHP’s globals, you can use the capture() method:

$request = Illuminate\Http\Request::capture();

Getting a Request Object in Laravel

Realistically, you're not going to be capturing your own requests. Laravel does this for
you in its bootstrap, and there are a few ways you can get access to it.

First—and again, we'll cover this more in Chapter 11—you can typehint the class in
any constructor or method that’s resolved by the container. That means you can type-
hint it in a controller method or a service provider, as seen in Example 10-2.

Example 10-2. Typehinting in a container-resolved method to receive a Request object

use Illuminate\Http\Request;

class PeopleController extends Controller

{
public function index(Request $request)
{
$allInput = Srequest->all();
}

The Request Object | 229

You can also use the request() global helper, which allows you to call methods on it
(e.g., request()->input()) and also allows you to call it on its own to get an instance
of $request:

$request = request();

$allInput = request()->all();
And you can also use the app() global method to get an instance of Request. You can
pass either the fully qualified class name or the shortcut, request:

$request = app(Illuminate\Http\Request::class);
$request = app('request');

Getting Basic Information About a Request

Now that we know how to get an instance of Request, what can we do with it? The
primary purpose of the Request object is to represent the current HT'TP request, so
the primary functionality the Request class offers is to make it easy to get useful
information about the current request.

I've categorized the methods described here, but note that there’s certainly overlap
between the categories, and the categories are a bit arbitrary—for example, query
parameters could just as easily be in “User and request state” as they are in “Basic user
input” Hopefully these categories will make it easy for you to learn, and then you can
throw away the categories.

Also, be aware that there are many more methods available on the Request object;
these are just the most commonly used methods.

Basic user input

The basic user input methods make it simple to get information that the users them-
selves explicitly provide—likely through submitting a form or an Ajax component.
When 1 reference “user-provided input” here, I'm talking about input from query
strings (GET), form submissions (POST), or JSON:

o all() returns an array of all user-provided input.
o input(fieldName) returns the value of a single user-provided input field.

o only(fieldName|[array,of, field,names]) returns an array of all user-
provided input for the specified field name(s).

o except(fieldName|[array,of, field,names]) returns an array of all user-
provided input except for the specified field name(s).

o exists(fieldName) returns a boolean of whether or not the field exists in
the input.

230 | Chapter 10: Requests and Responses

o has(fieldName) returns a boolean of whether the field exists in the input and is
not empty (has a value).

« json() returns a ParameterBag if the page had JSON sent to it.
« json(keyName) returns the value of the given key from JSON sent to the page.

ParameterBag

Sometimes in Laravel you'll run into a ParameterBag. This class is sort of like an asso-
ciative array. You can get a particular key using get():

echo $bag->get('name');

You can also use has() to check for the existence of a key, all() to get an array of all
keys and values, count() to count the number of items, and keys() to get an array of
just the keys.

Example 10-3 gives a few quick examples of how to use the user-provided informa-
tion methods from a request.

Example 10-3. Getting basic user-provided information from the request

// form

<form method="POST" action="/form"s
{{ csrf_field() }}
<input name="name"> Name

<input type="submit">

</form>

// route receiving the form
Route: :post('form', function (Request S$request) {
echo 'name is ' . Srequest->input('name');

echo 'all input is ' . print_r(Srequest->all());

echo 'user provided email address: ' . $request->has('email') ? 'true' : 'false';
s
User and request state

The user and request state methods include input that wasn’t explicitly provided by
the user through a form:
o method() returns the method (GET, POST, PATCH, etc.) used to access this route.

o path() returns the path (without the domain) used to access this page; e.g., for
http://www.myapp.com/abc/def it would return abc/def.

The Request Object | 231

o url() returns the URL (with the domain) used to access this page; e.g., for http://
www.myapp.com/abc it would return http://www.myapp.com/abc.

* is() returns a boolean of whether or not the current page request fuzzy-matches
a provided string (e.g., /a/b/c would be matched by $request->is('*b*'),
where * stands for any characters). It uses a custom regex parser found in
Str::is.

o ip() returns the user’s IP address.

o header() returns an array of headers (e.g., ['accept-language' => ['en-
US,en;q=0.8"'11), or, if passed a header name as a parameter, returns just that
header.

o server() returns an array of the variables traditionally stored in $_SERVER (e.g.,
REMOTE_ADDR), or, if passed a $_SERVER variable name, returns just that value.

o secure() returns a boolean of whether this page was loaded using HTTPS.
o pjax() returns a boolean of whether this page request was loaded using Pjax.

« wantsJson() returns a boolean of whether this request has any /json content
types in its Accept headers.

 isJson() returns a boolean of whether this page request has any /json content
types in its Content-Type header.

o accepts() returns a boolean of whether this page request accepts a given content

type.

Files

So far, all of the input we've covered is either explicit (retrieved by methods like
all(), input(), etc.) or defined by the browser or referring site (retrieved by meth-
ods like pjax()). File inputs are similar to explicit user input, but they’re handled
much differently:

o file() returns an array of all uploaded files, or, if a key is passed (the file upload
field name), returns just the one file.
« hasFile() returns a boolean of whether a file was uploaded at the specified key.
Every file that’s uploaded will be an instance of Symfony\Component\HttpFoundation

\File\UploadedFile, which provides a suite of tools for validating, processing, and
storing uploaded files.

Take a look at Chapter 14 for more examples of how to handle uploaded files.

232 | Chapter 10: Requests and Responses

Persistence

The request can also provide functionality for interacting with the session. Most ses-
sion functionality lives elsewhere, but there are a few methods that are particularly
relevant to the current page request:

o flash() flashes the current requests user input to the session to be retrieved
later.

« flashOnly() flashes the current request’s user input for any keys in the provided
array.

o flashExcept() flashes the current requests’s user input, except for any keys in
the provided array.

 old() returns an array of all previously flashed user input, or, if passed a key,
returns the value for that key if it was previously flashed.

o flush() wipes all previously flashed user input.

« cookie() retrieves all cookies from the request, or, if a key is provided, retrieves
just that cookie.

« hasCookie() returns a boolean of whether the request has a cookie for the given
key.

The flash*() and old() methods are used for storing user input and retrieving it
later, often after the input is validated and rejected.

The Response Object

Similar to the Request object, there’s an Illuminate Response object that represents
the response your application is sending to the end user, complete with headers,
cookies, content, and anything else used for sending the end user’s browser instruc-
tions on rendering a page.

Just like Request, the Illuminate\Http\Response object extends a Symfony class:
Symfony\Component\HttpFoundation\Response. This is a base class with a series of
properties and methods that make it possible to represent and render a response; Illu-
minate’s Response class decorates it with a few helpful shortcuts.

Using and Creating Response Objects in Controllers

Before we talk about how you can customize your response objects, let’s step back
and see how we most commonly work with response objects.

In the end, any response object returned from a route definition will be converted
into an HTTP response. It may define specific headers or specific content, set cookies,

The Response Object | 233

or whatever else, but eventually it will be converted into a response your users” brows-
ers can parse.

Let’s take a look at the simplest possible response, in Example 10-4.

Example 10-4. Simplest possible HTTP response

Route::get('route', function () {
return new Illuminate\Http\Response('Hello!');
Hs

// Same, using global function:
Route::get('route', function () {
return response('Hello!"');

s

We create a response, give it some core data, and then return it. We can also custom-
ize the HTTP status, headers, cookies, and more, like in Example 10-5.

Example 10-5. Simple HT TP response with customized status and headers

Route::get('route', function () {
return response('Error!', 400)
->header('X-Header-Name', 'header-value')
->cookie('cookie-name', 'cookie-value');

s

Setting headers

We define a header on a response by using the header() fluent method, like in
Example 10-5. The first parameter is the header name and the second is the header
value.

Adding cookies

We can also set cookies directly on the response object if wed like. We'll cover Lara-
vel’s cookie handling a bit more in Chapter 14, but take a look at Example 10-6 for a
simple use case for attaching cookies to a response.

Example 10-6. Attaching a cookie to a response

return response($content)
->cookie('signup_dismissed', true);

234 | Chapter 10: Requests and Responses

Specialized Response Types

There are also a few special response types for views, downloads, files, and JSON.
Each is a predefined macro that makes it easy to reuse particular templates for head-
ers or content structure.

View responses

In Chapter 4, I used the global view() helper to show how to return a template—for
example, view(view.name. here) or something similar. But if you need to customize
headers, HTTP status, or anything else when returning a view, you can use the
view() response type as shown in Example 10-7.

Example 10-7. Using the view() response type

Route::get('/', function (XmlGetterService $xml) {
Sdata = $xml->get();
return response()
->view('xml-structure', $data)
->header('Content-Type', 'text/xml');
b

Download responses

Sometimes you want your application to force the user’s browser to download a file,
whether you’re creating the file in Laravel or serving it from a database or a protected
location. The download() response type makes this simple.

The required first parameter is the path for the file you want the browser to down-
load. If it’s a generated file, you’ll need to save it somewhere temporarily.

The optional second parameter is the filename for the downloaded file (e.g.,
export.csv). If you don’t pass a string here, it will be automatically generated. The
optional third parameter allows you to pass an array of headers. Example 10-8 illus-
trates the use of the download() response type.

Example 10-8. Using the download() response type

public function export()

{

return response()

->download('file.csv', 'export.csv', ['header' => 'value']);

}
public function otherExport()
{

return response()->download('file.pdf');
}

The Response Object | 235

File responses

The file response is similar to the download response, except it allows the browser to
display the file instead of forcing a download. This is most common with images
and PDFs.

The required first parameter is the filename, and the optional second parameter can
be an array of headers (see Example 10-9).

Example 10-9. Using the file() response type

public function invoice($id)

{

return response()->file("./invoices/{$1d}.pdf", ['header' => 'value']);

}

JSON responses

JSON responses are so common that, even though theyre not really particularly com-
plex to program, there’s a custom response for them as well.

JSON responses convert the passed data to JSON (with json_encode()) and set the
Content-Type to application/json. You can also optionally use the setCallback()
method to create a JSONP response instead of JSON, as seen in Example 10-10.

Example 10-10. Using the json() response type

public function contacts()

{
return response()->json(Contact::all());
}
public function jsonpContacts(Request $request)
{
return response()
->json(Contact::all())
->setCallback($Srequest->input('callback'));
}
public function nonEloguentContacts()
{
return response()->json(['Tom', 'Jerry']);
}

Redirect responses

Redirects aren’t commonly called on the response() helper, so they’re a bit different
from the other custom response types we discussed already, but they’re still just a dif-

236 | Chapter 10: Requests and Responses

ferent sort of response. Redirects, returned from a Laravel route, send the user a redi-
rect (often a 301) to another page or back to the previous page.

You technically can call a redirect from response(), as in return
response()->redirectTo('/'). But more commonly you'll use the redirect-specific
global helpers.

There is a global redirect() function that can be used to create redirect responses,
and a global back() function that is a shortcut to redirect()->back().

Just like most global helpers, the redirect() global function can either be passed
parameters or can be used to get an instance of its class that you then chain method
calls onto. If you don’t chain, but just pass parameters, redirect() performs the same
as redirect()->to(); it takes a string and redirects to that string URL.
Example 10-11 shows some examples of its use.

Example 10-11. Examples of using the redirect() global helper

return redirect('account/payment');

return redirect()->to('account/payment');

return redirect()->route('account.payment');

return redirect()->action('AccountController@showPayment');

// If named route or controller needs parameters:
return redirect()->route('contacts.edit', ['id' => 15]);
return redirect()->action('ContactsController@edit', ['id' => 15]);

You can also redirect “back” to the previous page, which is especially useful when
handling and validating user input. Example 10-12 shows a common pattern in vali-
dation contexts.

Example 10-12. Redirect back with input
public function store()

{
// If validation fails...

return back()->withInput();
}

Finally, you can redirect and flash data to the session at the same time. This is com-
mon with error and success messages, like in Example 10-13.

Example 10-13. Redirect with flashed data

Route: :post('contacts', function () {
// store the contact...

return redirect('dashboard')->with('message', 'Contact created!');

The Response Object | 237

s

Route: :get('dashboard', function () {
// Get the flashed data from session--usually handled in Blade template
echo session('message');

s

Custom response macros

You can also create your own custom response types using “macros”. This allows you
to define a series of modifications to make to the response and its provided content.

Let’s re-create the json() custom response type, just to see how it works. As always,
you should probably create a custom service provider for these sorts of bindings, but
for now we'll just put it in AppServiceProvider, as seen in Example 10-14.

Example 10-14. Creating a custom response macro

class AppServiceProvider

{
public function boot()
{
Response::macro('myJson', function (Scontent) {
return response(json_encode(S$content))
->headers(['Content-Type' => 'application/json']);
b
}

Then, we can use it just like we would use the predefined json macro:
return response()->myJson(['name' => 'Sangeetha']);

This will return a response with the body of that array encoded for JSON, with the
JSON-appropriate Content-Type header.

Laravel and Middleware
Take a look back at Figure 10-1, at the start of this chapter.

We've covered the requests and responses, but we haven't actually looked into what
middleware is. You may already be familiar with middleware; it’s not unique to Lara-
vel, but rather a widely used architecture pattern.

An Introduction to Middleware

The idea of middleware is that there is a series of layers wrapping around your appli-
cation, like a multilayer cake or an onion. Just as shown in Example 10-1, every
request passes through every middleware layer on its way into the application, and

238 | Chapter 10: Requests and Responses

then the resulting response passes back through the middleware layers on its way out
to the end user.

Middleware is most often considered separate from your application logic, and usu-
ally is constructed in a way that should theoretically be applicable to any application,
not just the one you’re working on at the moment.

Middleware can inspect a request and decorate it, or reject it, based on what it finds.
That means middleware is great for something like rate limiting: it can inspect the IP
address, check how many times it’s accessed this resource in the last minute, and send
back a 429 (Too Many Requests) status if a threshold is passed.

Because middleware also gets access to the response on its way out of the application,
it’s great for decorating responses. For example, Laravel uses a middleware to add all
of the queued cookies from a given request/response cycle to the response right
before it is sent to the end user.

But some of the most powerful uses of middleware come from the fact that it can be
nearly the first and the last thing to interact with the request/response cycle. That
makes it perfect for something like enabling sessions—PHP needs you to open the
session very early and close it very late, and middleware is great for this.

Creating Custom Middleware

Let’s imagine we want to have a middleware that rejects every request that uses the
DELETE HTTP method, and also sends a cookie back for every request.

There’s an Artisan command to create custom middleware. Let’s try it out:

php artisan make:middleware BanDeleteMethod

You can now open up the file at app/Http/Middleware/BanDeleteMethod.php. The
default contents are shown in Example 10-15.

Example 10-15. Default middleware contents

class BanDeleteMethod

{
public function handle(Srequest, Closure Snext)
{
return $next(Srequest);
}
}

Laravel and Middleware | 239

How this handle() method represents the processing of both the incoming request
and the outgoing response is the most difficult thing to understand about middle-
ware, so let’s walk through it.

Understanding middleware’s handle() method

First, remember that middleware are layered one on top of another, and then finally
on top of the app. The first middleware that’s registered gets first access to a request
when it comes in, then that request is passed to every other middleware in turn, then
to the app; then the resulting response is passed outward through the middleware,
and finally this first middleware gets last access to the response when it goes out.

Let’s imagine we've registered BanDeleteMethod as the first middleware to run. That
means the $request coming into it is the raw request, unadulterated by any other
middleware. Now what?

Passing that request to $next() means handing it off to the rest of the middleware.
The $next() closure just takes that $request and passes it to the handle() method of
the next middleware in the stack. It then gets passed on down the line until there are
no more middleware to hand it to, and it finally ends up at the application.

Next, how does the response come out? This is where it might be hard to follow. The
application returns a response, which is passed back up the chain of middleware—
because each middleware returns its response. So, within that same handle()
method, the middleware can decorate a $request and pass it to the $next() closure,
and can then choose to do something with the output it receives before finally return-
ing that output to the end user. Let’s look at some pseudocode to make this clearer
(Example 10-16).

Example 10-16. Pseudocode explaining the middleware call process

class BanDeleteMethod
{
public function handle($request, Closure S$next)
{
// At this point, S$Srequest is the raw request from the user.
// Let's do something with it, just for fun.
if (Srequest->ip() === '192.168.1.1") {
return response('BANNED IP ADDRESS!', 403);
}

// Now we've decided to accept it. Let's pass it on to the next
// middleware in the stack. We pass it to S$next(), and what is
// returned is the response after the Srequest has been passed
// down the stack of middleware to the application and the

// application's response has been passed back up the stack.
$response = Snext(S$request);

240 | Chapter 10: Requests and Responses

// At this point, we can once again interact with the response
// just before it is returned to the user
Sresponse->cookie('visited-our-site', true);

// Finally, we can release this response to the end user
return $response;

}

Finally, let's make the middleware do what we actually promised (Example 10-17).

Example 10-17. Sample middleware banning the delete method

class BanDeleteMethod
{

public function handle(Srequest, Closure Snext)
{
// Test for the DELETE method
if (Srequest->method() === 'DELETE') {
return response(
"Get out of here with that delete method",
405

);
}

$response = Snext(S$request);

// Assign cookie
Sresponse->cookie('visited-our-site', true);

// Return response
return $response;

}

Binding Middleware

We're not quite done yet. We need to register this middleware in one of two ways:
globally or for specific routes.

Global middleware are applied to every route; route middleware are applied on a
route-by-route basis.
Binding global middleware

Both bindings happen in app/Http/Kernel.php. To add a middleware as global, add its
class name to the $middleware property, as in Example 10-18.

Laravel and Middleware | 241

Example 10-18. Binding global middleware

// app/Http/Kernel.php

protected $middleware = [
\Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode: :class,
\App\Http\Middleware\BanDeleteMethod: :class,

1;

Binding route middleware

Middleware intended for specific routes can be added as a route middleware or as
part of a middleware group. Let’s start with the former.

Route middleware are added to the $routeMiddleware array in app/Http/Kernel.php.
It’s similar to adding them to $middleware, except we have to give each a key that will
be used when applying this middleware to a particular route, as seen in
Example 10-19.

Example 10-19. Binding route middleware

// app/Http/Kernel.php
protected $routeMiddleware = [
'auth' => \App\Http\Middleware\Authenticate::class,

'nodelete' => \App\Http\Middleware\BanDeleteMethod: :class,
I;

We can now use this middleware in our route definitions, like in Example 10-20.

Example 10-20. Applying route middleware in route definitions

// Doesn't make much sense for our current exarmple...
Route::get('contacts', [

'middleware' => 'nodelete',

'uses' => 'ContactsController@index'

D;

// Makes more sense for our current example...

Route: :group(['prefix' => 'api', 'middleware' => 'nodelete'], function () {
// All routes related to an API

b

Using middleware groups

Laravel 5.2 introduced the concept of middleware groups. Theyre essentially pre-
packaged bundles of middleware that make sense to be together in specific contexts.

242 | Chapter 10: Requests and Responses

Middleware groupsin 5.2

The default routes file in earlier releases of 5.2, routes.php, had
three distinct sections: the root route (/) wasn’t under any middle-
ware group, and then there was a web middleware group and an
api middleware group. It was a bit confusing for new users, and
that meant the root route didn’t have access to the session or any-
thing else that’s kicked off in the middleware.

In later versions of 5.2 everything’s simplified: every route in
routes.php is in the web middleware group. In 5.3, you get a routes/
web.php file for web routes and a routes/api.php file for API routes.
If you want to add routes in other groups, read on.

Out of the box there are two groups: web and api. web has all the middleware that will
be useful on almost every Laravel page request, including middleware for cookies,
sessions, CSRF protection, and more. api has none of those—it has a throttle middle-
ware and a route model binding middleware, and that’s it. These are all defined in
app/Http/Kernel.php.

You can apply middleware groups to routes just like you apply route middleware to
routes, with the middleware() fluent method:

Route::get('/', 'HomeController@index')->middleware('web');

You can also create your own middleware groups and add and remove route middle-
ware to and from preexisting middleware groups. It works just like adding route mid-
dleware normally, but youTre instead adding them to keyed groups in the
$middlewareGroups array.

You might be wondering how these middleware groups match up with the two
default routes files. Unsurprisingly, the routes/web.php file is wrapped with the web
middleware group, and the routes/api.php file is wrapped with the api middleware

group.
The routes/* files are loaded in the RouteServiceProvider. Take a look at the
map() method there (Example 10-21) and you’ll find a mapWebRoutes() and a mapApi

Routes() method, each of which loads its respective files already wrapped in the
appropriate middleware group.

Example 10-21. Default route service provider in Laravel 5.3

// App|\Providers\RouteServiceProvider
public function map()
{
$this->mapApiRoutes();
$this->mapWebRoutes();

Laravel and Middleware | 243

protected function mapApiRoutes()

{
Route: :group([
'middleware' => 'api',
'namespace’ => S$this->namespace,
'prefix' => 'api',
1, function (Srouter) {
require base_path('routes/api.php');
b
}
protected function mapWebRoutes()
{
Route: :group([
'middleware' => 'web',
'namespace' => S$this->namespace,
1, function (Srouter) {
require base_path('routes/web.php');
b
}

As you can see in Example 10-21, were using the router to load a route group under
the default namespace (App\Http\Controllers) and with the web middleware group,
and another under the api middleware group.

Passing Parameters to Middleware

It's not common, but there are times when you need to pass parameters to a route
middleware. For example, you might have an authentication middleware that will act
differently depending on whether youre guarding for the member user type or the
owner user type:

Route::get('company', function () {

return view('company.admin');

})->middleware('auth:owner");
To make this work, you’ll need to add one or more parameters to the middleware’s
handle() method, and update that method’s logic accordingly:

public function handle(Srequest, $next, $role)

{
if (auth()->check() && auth()->user()->hasRole($role)) {
return $Snext(Srequest);
}
return redirect('login');
}

244 | Chapter 10: Requests and Responses

Note that you can also add more than one parameter to the handle() method, and
pass multiple parameters to the route definition by separating them with commas:

Route: :get('company', function () {
return view('company.admin');
})->middleware('auth:owner,view');

Form Request Objects

In this chapter we covered how to inject an Illuminate Request object, which is the
base—and most common—request object.

However, you can also extend the Request object and inject that instead. You'll learn
more about how to bind and inject custom classes in Chapter 11, but there’s one spe-
cial type, called the form request, that has its own set of behaviors.

See “Form Requests” on page 107 to learn more about creating and using form
requests.

Testing

Outside of the context of you as a developer using requests, responses, and middle-
ware in your own testing, Laravel itself actually uses each quite a bit.

When youre doing application testing—calls like $this->visit('/'), clicks, and
whatever else—you’re instructing Laravel’s application testing framework to generate
request objects that represent the interactions that youre describing. Then those
request objects are passed to your application as if it were an actual visit. That’s why
the application tests are so accurate: your application doesn’t actually “know” that it’s
not a real user that’s interacting with it.

In this context, many of the assertions youre making—say, assertResponseOk()—
are assertions against the response object generated by the application testing frame-
work. The assertResponseOk() method just looks at the response object and asserts
that its 1sOk() method returns true—which is just checking that its status code
is 200. In the end, everything in application testing is acting as if this were a real page
request.

Find yourself in a context where you need a request to work with in your tests? You
can always pull one from the container with $request = request(). Or you could
create your own—the constructor parameters for the Request class, all optional, are
as follows:

$request = new Illuminate\Http\Request(
$Squery, // GET array
$request, // POST array

Testing | 245

Sattributes, // "attributes" array; empty is fine

$Scookies, // cookies array
$files, // files array

$server, // servers array
$content // raw body data

);
If you're really interested in an example, check out the method Symfony uses to create
a new Request from the globals PHP provides: Symfony\Component\HttpFoundation
\Request@createFromGlobals().

Responses are even simpler to create manually, if you need to. Here are the (optional)
parameters:

Sresponse = new Illuminate\Http\Response(
$Scontent, // response content
$status, // HTTP status, default 200
Sheaders // array headers array

);
Finally, if you need to disable your middleware during an application test, import the
WithoutMiddleware trait into that test.

TL;DR

Every request coming into a Laravel application is converted into an Illuminate
Request object, which then passes through all middleware, and is processed by the
application. The application generates a response object, which is then passed back
through all of the middleware (in reverse order) and returned to the end user.

Request and response objects are responsible for encapsulating and representing
every relevant piece of information about the incoming user request and the outgoing
server response.

Service providers collect together related behavior for binding and registering classes
for use by the application.

Middleware wrap the application and can reject or decorate any request and
response.

246 | Chapter 10: Requests and Responses

CHAPTER 11
The Container

Laravel’s service container, or dependency injection container, sits at the core of
almost every other feature. The container is a simple tool you can use to bind and
resolve concrete instances of classes and interfaces, and at the same time it’s a power-
ful and nuanced manager of a network of interrelated dependencies. In this chapter,
we'll learn more about what it is, how it works, and how you can use it.

Naming and the container

You'll notice in this book, in the documentation, and in other edu-
cational sources that there are quite a few names folks use for the
container. These include:

o Application container
« IoC (inversion of control) container
« Service container

« DI (dependency injection) container

All are useful and valid, but just know they’re all talking about the
same thing. They're all referring to the service container.

A Quick Introduction to Dependency Injection

Dependency injection means that, rather than being instantiated (“newed up”) within
a class, each class’s dependencies will be injected in from the outside. This most com-
monly occurs with constructor injection, which means an object’s dependencies are
injected when it’s created. But there’s also setter injection, where the class exposes a
method specifically for injecting a given dependency, and method injection, where one
or more methods expect their dependencies to be injected when they’re called.

247

Take a look at Example 11-1 for a quick example of constructor injection, the most
common type of dependency injection.

Example 11-1. Basic dependency injection
<?php

class UserMailer

{
protected $mailer;
public function __construct(Mailer $mailer)
{
Sthis->mailer = $mailer;
}
public function welcome(Suser)
{
return $this->mailer->mail($user->email, 'Welcome!');
}
}

As you can see, this UserMailer class expects an object of type Mailer to be injected
when it’s instantiated, and its methods then refer to that instance.

The primary benefits of dependency injection are that it gives us the freedom to
change what we're injecting, mock dependencies for testing, and instantiate shared
dependencies just once for shared use.

Inversion of Control

You may have heard the phrase “inversion of control” used in conjunction with
“dependency injection,” and sometimes Laravel’s container is called the IoC container.

The two concepts are very similar. Inversion of control references the idea that, in tra-
ditional programming, the lowest-level code—specific classes, instances, and proce-
dural code—“controls” which instance of a particular pattern or interface to use. For
example, if youre instantiating your mailer in each class that needs it, each class gets
to decide whether to use Mailgun or Mandrill or Sendgrid.

The idea of inversion of control refers to flipping that “control” to live at the opposite
end of your application. Now the definition of which mailer to use lives at the highest,
most abstract level of your application, often in configuration. Every instance, every
piece of low-level code, looks up to the high-level configuration to essentially “ask”
“Can you give me a mailer?” They don’t “know” which mailer they’re getting, just that
they’re getting one.

248 | Chapter 11: The Container

Dependency injection and especially DI containers provide a great opportunity for
inversion of control, because you can define once which concrete instance of the
Mailer interface, for example, to provide when injecting mailers into any class that
needs them.

Dependency Injection and Laravel

As we saw in Example 11-1, the most common pattern for dependency injection
is constructor injection, or injecting the dependencies of an object when it’s instanti-
ated (“constructed”).

Let’s take our UserMailer class from Example 11-1. Example 11-2 shows what it
might look like to create and use an instance of it.

Example 11-2. Simple manual dependency injection

$mailer = new MailgunMailer($mailgunKey, SmailgunSecret, $mailgunOptions);
SuserMailer = new UserMailer($Smailer);

SuserMailer->welcome($Suser);

Now let’s imagine we want our UserMailer class to be able to log messages, as well as
sending a notification to a Slack channel every time it sends a message. Example 11-3
shows what this would look like. As you can see, it would start to get pretty unwieldy
it we had to do all this work every time we wanted to create a new instance—espe-
cially when you consider that we’ll have to get all these parameters from somewhere.

Example 11-3. More complex manual dependency injection

Smailer = new MailgunMailer($mailgunKey, S$mailgunSecret, $mailgunOptions);
$logger = new Logger($logPath, $minimumLoglLevel);

S$slack = new Slack(S$SslackKey, $slackSecret, $channelName, $channellcon);
SuserMailer = new UserMailer($mailer, S$logger, $slack);

SuserMailer->welcome($user);

Imagine having to write that code every time you wanted a UserMailer. Dependency
injection is great, but this is a mess.

The app() Global Helper

Before we go too far into how the container actually works, let’s take a quick look at
the simplest way to get an object out of the container: the app() helper.

Dependency Injection and Laravel | 249

Pass any string to that helper, whether it’s a fully qualified class name (FQCN) or a
Laravel shortcut (well talk about those more in a second), and it’ll return an instance
of that class:

$logger = app(Logger::class);

This is the absolute simplest way to interact with the container. It creates an instance
of this class and returns it for you. Nice and easy.

Different Syntaxes for Making a Concrete Instance

The simplest way to “make” a concrete instance is to use the global helper and pass
the class or interface name directly to the helper, using app(' FQCN').

However, if you have an instance of the container—whether it was injected some-
where, or if youre in a service provider and using $this->app, or (a lesser-known
trick) if you get one by just running $container = app()—there are a few ways to
make an instance from there.

The most common way is to run the make() method. $app->make('FQCN') works
well. However, you may also see other developers and the documentation use this
syntax sometimes: $app[' FQCN']. Don’t worry. That’s doing the same thing; it’s just a
different way of writing it.

Creating the Logger instance as shown here seems simple enough, but you might've
noticed that our $logger class in Example 11-3 has two parameters: $logPath and
$minimumLoglevel. How does the container know what to pass here?

Short answer: it doesn't. You can use the app() global helper to create an instance of a
class that has no parameters in its constructor, but at that point you could’ve just run
new Logger yourself. The container shines when there’s some complexity in the con-
structor, and that's when we need to look at how exactly the container can figure out
how to construct classes with constructor parameters.

How the Container Is Wired

Before we dig further into the Logger class, take a look at Example 11-4.

Example 11-4. Laravel autowiring

class Bar

{
}

public function __construct() {}

250 | Chapter 11: The Container

class Baz

{
public function __construct() {}
}
class Foo
{
public function __construct(Bar $bar, Baz $baz) {}
}

$foo = app(Foo::class);

This looks similar to our mailer example in Example 11-3. What’s different is that
these dependencies (Bar and Baz) are both so simple that the container can resolve
them without any further information. The container reads the typehints in the con-
structor, resolves an instance of each, and then injects them into the new Foo instance
when it’s creating it. This is called autowiring: resolving instances based on type-hints
without the developer needing to explicitly bind those classes in the container.

Typehints in PHP

“Typehinting” in PHP means putting the name of a class or inter-
face in front of a variable in a method signature:

public function __construct(Logger $logger) {}

This typehint is telling PHP that whatever is passed into the
method must be of type Logger, which could be either an interface

or a class.

Autowiring means that, if a class has not been explicitly bound to the container (like
Foo, Bar, or Baz in this context) but the container can figure out how to resolve it
anyway, the container will resolve it. This means any class with no constructor depen-
dencies (like Bar and Baz) and any class with constructor dependencies that the con-
tainer can resolve (like Foo) can be resolved out of the container.

That leaves us only needing to bind classes that have unresolvable constructor param-
eters—for example, our $logger class in Example 11-3, which has parameters related
to our log path and log level.

For those, we'll need to learn how to explicitly bind something to the container.

Binding Classes to the Container

Binding a class to Laravel’s container is essentially telling the container, “If a devel-
oper asks for an instance of Logger, here’s the code to run in order to instantiate one
with the correct parameters and dependencies and then return it correctly”

Binding Classes to the Container | 251

Were teaching the container that, when someone asks for this particular string
(which is usually the FQCN of a class), it should resolve it this way.

Binding to a Closure

So, let’s look at how to bind to the container. Note that the appropriate place to bind
to the container is in a service provider’s register() method (see Example 11-5).

Example 11-5. Basic container binding

// In service provider
public function register()
{
$this->app->bind(Logger::class, function ($app) {
return new Logger('\log\path\here', 'error');
s
}

There are a few important things to note in this example. First, were running
$this->app->bind(). $this->app is an instance of the container that’s always avail-
able on every service provider. The container’s bind() method is what we use to bind
to the container.

The first parameter of bind() is the “key” were binding to. Here we've used the
FQCN of the class. The second parameter differs depending on what youre doing,
but essentially it should be something that shows the container what to do to resolve
an instance of that bound key.

So, in this example, were passing a closure. And now, any time someone runs
app(Logger::class), they’ll get the result of this closure. The closure is passed an
instance of the container itself ($app), so if the class youre resolving has a depend-
ency you want resolved out of the container, you can use it in your definition:

Sthis->app->bind(UserMailer::class, function (Sapp) {
return new UserMailer(
$app->make(Mailer::class),
$app->make(Logger::class),
$app->make(Slack: :class)
);
b

Note that every time you ask for a new instance of your class, this closure will be run
again and the new output returned.

252 | Chapter 11: The Container

Binding to Singletons, Aliases, and Instances

If you want the output of the binding closure to be cached so that this closure isn’t re-
run every time you ask for an instance, that’s the Singleton pattern, and you can run
$this->app->singleton() to do that:

public function register()

{
$this->app->singleton(Logger::class, function () {
return new Logger('\log\path\here', 'error');
b
}
You can also get similar behavior if you already have an instance of the object you
want the singleton to return:

public function register()

{
$logger = new Logger('\log\path\here', 'error');
$this->app->instance(Logger::class, S$logger);
}
Finally, if you want to alias one class to another, bind a class to a shortcut, or bind a
shortcut to a class, you can just pass two strings:

$this->bind(Logger::class, FirstLogger::class);

// or

$this->bind('log', FirstLogger::class);

// or

$this->bind(FirstLogger::class, 'log');
Note that these shortcuts are common in Laravel’s core; it provides a system of short-
cuts to classes that provide core functionality, using easy-to-remember keys like log.

Binding a Concrete Instance to an Interface

Just like we can bind a class to another class, or a class to a shortcut, we can also bind
to an interface. This is extremely powerful, because we can now typehint interfaces
instead of class names, like in Example 11-6.

Example 11-6. Typehinting and binding to an interface

use Interfaces\Mailer;

class UserMailer

{

protected $mailer;

public function

{

_construct(Mailer $mailer)

Binding Classes to the Container | 253

Sthis->mailer = $mailer;

}

// service provider
public function register()

{
Sthis->app->bind(\Interfaces\Mailer::class, function () {
return new MailgunMailer(...);

s
}

You can now typehint Mailer or Logger interfaces all across your code, and then
choose once in a service provider which specific mailer or logger you want to use
everywhere. That’s inversion of control.

Contextual Binding

Sometimes you need to change how to resolve an interface depending on the context.
You might want to log events from one place to a local syslog and from others out
to an external service. So, lets tell the container to differentiate—check out
Example 11-7.

Example 11-7. Contextual binding

// In a service provider
public function register()

{
$this->app->when(FileWrangler::class)
->needs(Interfaces\Logger::class)
->give(Loggers\Syslog::class);

$this->app->when(Jobs\SendWelcomeEmail: :class)
->needs(Interfaces\Logger::class)
->give(Loggers\PaperTrail::class);

}

Constructor Injection

We've covered the concept of constructor injection, and we've looked at how the con-
tainer makes it easy to resolve instances of a class or interface out of the container. We
saw how easy it is to use the app() helper to make instances, and also how the con-
tainer will resolve the constructor dependencies of a class when it’s creating it.

254 | Chapter 11: The Container

What we haven’t covered yet is how the container is also responsible for resolving
many of the core operating classes of your application. For example, every controller
is instantiated by the container. That means if you want an instance of a logger in
your controller, you can simply typehint the logger class in your controller’s construc-
tor, and when Laravel creates the controller, it will resolve it out of the container and
that logger instance will be available to your controller. Take a look at Example 11-8
for an example.

Example 11-8. Injecting dependencies into a controller

class MyController extends Controller

{
protected $logger;
public function __construct(Logger $logger)
{
$this->logger = $logger;
}
public function index()
{
// Do something
$this->logger->error('Something happened');
}
}

The container is responsible for resolving controllers, middleware, queue jobs, event
listeners, and any other classes that are automatically generated by Laravel in the pro-
cess of your application’s lifecycle—so any of those classes can typehint dependencies
in their constructors and expect them to be automatically injected.

Method Injection

There are a few places in your application where Laravel doesn't just read the con-
structor signature: it also reads the method signature and will inject dependencies for
you there as well.

The most common place to use method injection is in controller methods. If you
have a dependency you only want to use for a single controller method, you can inject
it into just that method like in Example 11-9.

Example 11-9. Injecting dependencies into a controller method

class MyController extends Controller

{

Method Injection | 255

// Method dependencies can come after or before route parameters
public function show(Logger $logger, $id)

{
// Do something
$logger->error('Something happened');

}

This is also available on the boot() method of service providers, and you can also
arbitrarily call a method on any class using the container, which will allow for method
injection there (see Example 11-10).

Example 11-10. Manually calling a class method using the container’s call() method

class Foo

{
public function bar($parameterl) {}

}
$foo = new Foo;

// Calls the 'bar' method on Sfoo with a first parameter of "value"
app()->call($foo, 'bar', ['parameterl' => 'value'l]);

Facades and the Container

We've covered facades quite a bit so far in the book, but we haven’t actually talked
about how they work.

Laravel’s facades are classes that provide simple access to core pieces of Laravel’s func-
tionality. There are two trademark features of facades: first, they’re all available in the
global namespace (\Log is an alias to \Illuminate\Support\Facades\Log), and sec-
ond, they use static methods to access nonstatic resources.

Let’s take a look at the Log facade, since we've been looking at logging already in this
chapter. In your controller or views you could use this call:
Log: :alert('Something has gone wrong!');

Here’s what it would look like to make that same call without the facade:

$logger = app('log');
$logger->alert('Something has gone wrong!');

As you can see, facades translate static calls (any method call that you make on a class
itself, using : :, instead of on an instance) to normal method calls on instances.

256 | Chapter 11: The Container

Importing facade namespaces

If youre in a namespaced class, you'll want to be sure to import the
facade at the top:

use Illuminate\Support\Facades\Log;

class Controller extends Controller

{
public function index()
{
/) ...
Log::error('Something went wrong!');
}
How Facades Work

So, let’s take a look at the Log facade and see how it actually works.

First, open up the class Il1luminate\Support\Facades\Log. You'll see something like
Example 11-11.

Example 11-11. The Log facade class
<?php
namespace Illuminate\Support\Facades;

class Log extends facade

{
protected static function getFacadeAccessor()
{
return 'log’;
}
}

Every facade has a single method: getFacadeAccessor(). This defines the key that
Laravel should use to look up this facade’s backing instance from the container.

In this instance, we can see that every call to the Log facade is proxied to be a call to
an instance of the log shortcut from the container. Of course, that’s not a real class or
interface name, so we know it’s one of those shortcuts I mentioned earlier.

So, here’s what’s really happening:
Log::error('Help!"');
// 1s the same as...

app('log')->error('Help!');

Facades and the Container | 257

There are a few ways to look up exactly what class each facade accessor points to, but
checking the documentation is the easiest. There’s a table on the facades documenta-
tion page that shows you, for each facade, which container binding (shortcut, like
log) it’s connected to, and which class that returns. It looks like this:

Facade Class Service Container Binding

App Illuminate\Foundation\Application app

Log Illuminate\Log\Writer log

Now that you have this reference, you can do three things.

First, you can always figure out what methods are available on a facade. Just find its
backing class and look at the definition of that class, and you'll know that any of its
public methods are callable on the facade.

Second, you can figure out how to inject a facade’s backing class using dependency
injection. If you ever want the functionality of a facade but prefer to use dependency
injection, just typehint the facade’s backing class or get an instance of it with app()
and call the same methods you would’ve called on the facade.

Third, you can see how to create your own facades. Create a class for the facade that
extends Illuminate\Support\Facades\Facade, and give it a getFacadeAccessor()
method, which returns a string. Make that string something that can be used to
resolve your backing class out of the container—maybe just the FQCN of the class.
Finally, you have to register the facade by adding it to the aliases array in config/
app.php. Done! You just made your own facade.

Service Providers

We've covered the basics of service providers in the previous chapter (see “Service
Providers” on page 227). What’s most important with regard to the container is that
you remember to register your bindings in the register() method of some service
provider somewhere.

You can just dump loose bindings into App\Providers\AppServiceProvider, which
is a bit of a catchall, but it's generally better practice to create a unique service pro-
vider for each group of functionality youre developing, and bind its classes in its
unique register() method.

Testing

The ability to use inversion of control and dependency injection makes testing in Lar-
avel extremely versatile. You can bind a different logger, for instance, depending on

258 | Chapter 11: The Container

https://laravel.com/docs/facades
https://laravel.com/docs/facades

whether the app is live or under testing. Or you can change the transactional email
service from Mailgun to a local email logger for easy inspection. Both of these swaps
are actually so common that it’s even easier to make them using Laravel’s .env config-
uration files, but you can make similar swaps with any interfaces or classes youd like.

The easiest way to do this is to explicitly re-bind classes and interfaces when you need
them rebound, directly in the test. Example 11-12 shows how.

Example 11-12. Overriding a binding in tests

public function test_1it_does_something()

{
app()->bind(Interfaces\Logger, function () {
return new DevNullLogger;
b
// do stuff
1

If you need certain classes or interfaces rebound globally for your tests (which is not a
particularly common occurrence), you can do this either in the test classs setUp()
method or in Laravel's TestCase base test’s setUp() method, as in Example 11-13.

Example 11-13. Overriding a binding for all tests

class TestCase extends \Illuminate\Foundation\Testing\TestCase

{
public function setUp()
{
parent::setUp();
app()->bind('whatever', 'whatever else');
}
}

When using something like Mockery, it's common to create a mock or spy or stub of
a class, and then re-bind that to the container in place of its referent.

TL;DR

Laravel’s service container has many names, but in the end its goal is to make it easy
to define how to resolve certain string names as concrete instances. These string
names are going to be the fully qualified class names of classes or interfaces, or short-
cuts like log.

Each binding teaches the application, given a string key (e.g., app('log')), how to
resolve a concrete instance.

TLDR | 259

The container is smart enough to do recursive dependency resolution, so if you try to
resolve an instance of something that has constructor dependencies, the container
will try to resolve those dependencies based on their typehints, then pass them into
your class, and finally return an instance.

There are a few ways to bind to the container, but in the end they all define what to
return given a particular string.

Facades are simple shortcuts that make it easy to use static calls on a root-
namespaced class to call nonstatic methods on classes resolved out of the container.

260 | Chapter 11: The Container

CHAPTER 12
Testing

Most developers know that testing your code is A Good Thing. Were supposed to do
it. We likely have an idea of why it’s good, and we might've even read some tutorials
about how it’s supposed to work.

But the gap between knowing why you should test and knowing how to test is wide.
Thankfully, tools like PHPUnit, Mockery, and PHPSpec have provided an incredible
number of options for testing in PHP—but it can still be pretty overwhelming to get
everything set up.

Out of the box, Laravel comes with baked-in integrations to PHPUnit (unit testing),
Behat (behavior-driven development), Mockery (mocking), and Faker (creating fake
data for seeding and testing). It also comes with its own simple and powerful suite of
application testing tools, which allow you to “crawl” your site’s URIs, click buttons,
submit forms, check HTTP status codes, and validate and assert against JSON.

Laravel’s testing setup even has a sample application test that can run successfully the
moment you create a new app. That means you don't have to spend any time config-
uring your testing environment, and that’s one less barrier to writing your tests.

Testing Terms

It’s hard to get any group of programmers to agree on which terms they use to define
different types of tests.

In this book, I'll use three primary terms:

Unit tests
Unit tests target small, relatively isolated units—a class or method, usually.

261

Integration tests
Integration tests test the way individual units work together and pass messages.

Application tests
Often called acceptance or functional tests, application tests test the entire behav-
ior of the application, usually at an outer boundary by employing something like
a document object model (DOM) crawler—which is exactly what Laravel’s appli-
cation test suite offers.

Testing Basics

Tests in Laravel live in the tests folder, and you can see there are two files in there by
default: TestCase.php, which is a base class intended to be extended by any application
tests, and ExampleTest.php, which is a ready-to-run application test that will return
green on any new app.

As you can see in Example 12-1, ExampleTest “crawls” the DOM of the page returned
at the root path of your application and checks for the word “Laravel” If it finds it,
it'll pass; if not, it’ll fail.

Example 12-1. tests/ExampleTest.php

<?php

use Illuminate\Foundation\Testing\WithoutMiddleware;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Illuminate\Foundation\Testing\DatabaseTransactions;

class ExampleTest extends TestCase

{
/**
* A basic functional test example.
*
* @return void
*/
public function testBasicExample()
{
S$this->visit('/")
->see('Laravel');
}
}

To run this test, go to the command line and run ./vendor/bin/phpunit from the
root folder of your application. You should see something like the output in
Example 12-2.

262 | Chapter12: Testing

Example 12-2. Sample ExampleTest output

PHPUnit 5.5.2 by Sebastian Bergmann and contributors.

Time: 139 ms, Memory: 12.00Mb
OK (1 test, 2 assertions)

You just ran your first Laravel application test! As you can see, you're set up out of the
box not only with a functioning PHPUnit instance, but also a full-fledged application
testing suite complete with a DOM crawler.

In case youre not familiar with PHPUnit, let’s change the test to look for “Apple-
sauce,” like in Example 12-3, to see what an error looks like.

Example 12-3. tests/ExampleTest.php, edited to fail
public function testBasicExample()
{
Sthis->visit('/")
->see('Applesauce');

}
Whoops! This time the output will probably look a bit like Example 12-4.

Example 12-4. Sample failing ExampleTest output
PHPUnit 5.5.2 by Sebastian Bergmann and contributors.
F

Time: 115 ms, Memory: 12.00Mb

There was 1 failure:

1) ExampleTest::testBasicExample

<source of page here>

Failed asserting that the page contains the HTML [Applesauce].
Please check the content above.

/path-to-your-app/vendor/.../Foundation/Testing/Constraints/PageConstraint.php:90
/path-to-your-app/vendor/.../Foundation/Testing/Concerns/InteractsWithPages.php:271
/path-to-your-app/vendor/.../Foundation/Testing/Concerns/InteractsWithPages.php:287
/path-to-your-app/tests/ExampleTest.php:21

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

Testing Basics | 263

Let’s break this down. First, we get an F instead of a . up top (just below the PHPUnit
attribution information). Then, for each error, it shows us the test name (here, 1)
ExampleTest: : testBasicExample), the error message (Failed asserting...),anda
full stack trace of our error, so we can see what was called. Since this was an applica-
tion test, the stack trace just shows us that it was called via the InteractsWithPages
trait, but if this were a unit or integration test, wed see the entire call stack of the test.

A Sample JSON Test

As you can see in this example, JSON testing is simple and clear—perhaps simpler
than any other sort of application testing:

public function test_people_list_shows_person_after_creation()

{
Sthis->json('post', 'people', ['name' => 'matt']);
Sthis->json('get', 'people');
Sthis->seeJson(['name' => 'matt']);

}

Just run your POST, GET, DELETE, or whatever else, and then assert that the database, or
additional GET response, or anything else returns what you expect after you've per-
formed the given action.

Let’s learn more about Laravel’s testing environment.

Naming Tests

By default, Laravel’s testing system will run any files in the tests directory whose
names end with the word Test. That’s why tests/ExampleTest.php was run by default.

If youre not familiar with PHPUnit, you might not know that only the methods in
your tests with names that start with the word test will be run—or methods with a
@test docblock. See Example 12-5 for which methods will and won’t run.

Example 12-5. Naming PHPUnit methods

class Naming

{
public function test_it_names_things_well()
{
// Runs as "test it names things well"
}

public function testItNamesThingsWell()
{

// Runs as "It names things well"

264 | Chapter12: Testing

}

/** @test */
public function it_names_things_well()

{

// Runs as "it names things well"
}
public function it_names_things_well()
{

// Doesn't run
}

}

The Testing Environment

Any time a Laravel application is running, it has a current “environment” name
that represents the environment it's running in. This name may be set to local,
staging, production, or anything else you want. You can retrieve this by running
app()->environment(), or you can run something like if (app()->environ
ment('local')) to test whether the current environment matches the passed name.

When you run tests, Laravel automatically sets the environment to testing. This
means you can test for 1f (app()->environment('testing')) to enable or disable
certain behaviors in the testing environment.

Additionally, Laravel doesn’t load the normal environment variables from .env for
testing. If you want to set any environment variables for your tests, edit phpunit.xml
and, in the <php> section, add a new <env> for each environment variable you want to
pass in—for example, <env name="DB_CONNECTION" value="sqlite"/>.

Using .env.test to Exclude Testing Environment
Variables from Version Control

If you want to set environment variables for your test, you can do so in phpunit.xml as
just described. But what if you have environment variables for your tests that you
want to be different for each testing environment? Or what if you want them to be
excluded from source control?

Thankfully, handling these conditions is pretty easy. First, create an .env.test.example
file—just like Laravel’s .env.example file—and add .env.test to your .gitignore file just
below .env. Next, add the variables youd like to be environment-specific
to .env.test.example, just like they’re set in .env.example. Then, make a copy
of .env.test.example and name it .env.test.

Finally, let’s load that file into our tests. In fests/TestCase.php, in the createApplica
tion() method, paste this code just below the $app = require(...) line:

The Testing Environment | 265

if (file_exists(dirname(__DIR__) . '/.env.test')) {
(new \Dotenv\Dotenv(dirname(__DIR__), '.env.test'))->load();
}

That’s it! You're now loading .env.test to provide environment variables to every test.

The Testing Traits

Before we get into the methods you can use for testing, you’ll want to know about the
three testing traits you can pull into any test class.

WithoutMiddleware

If you import I1luminate\Foundation\Testing\WithoutMiddleware into your test
class, it will disable all middleware for any test in that class. This means you won’t
have to worry about the authentication middleware, or CSRF protection, or anything
else that might be useful in the real application but distracting in a test.

DatabaseMigrations

Laravel provides two tools out of the box to keep your database in the right state
between tests: the DatabaseMigrations trait and the DatabaseTransactions trait.

If you import the DatabaseMigrations trait, it will run your entire set of database
migrations up before each test and down after each test. Laravel makes this happen by
running php artisan migrate in the setUp() method before every test runs and php
artisan migrate:rollback in the tearDown() method after each test finishes.

DatabaseTransactions

DatabaseTransactions, on the other hand, expects your database to be properly
migrated before your tests start. Then, it wraps every test in a database transaction,
which it rolls back at the end of each test. This means that, at the end of each test,
your database will be returned to the exact same state it was in prior to the test.

Application Testing

Now that we've laid out the basic framework of Laravels testing environment, lets
take a look at how it actually works.

266 | Chapter12: Testing

In Laravel's default ExampleTest (tests/ExampleTest.php) you can see that, with a
few lines of code, we can “crawl” to particular URIs in our application and actually
check the output for certain words. But how can PHPUnit navigate pages as if it were
a browser?

TestCase

Any application tests should extend the TestCase class (tests/TestCase.php) thats
included with Laravel by default. Your application’s TestCase class will extend the
abstract Illuminate\Foundation\Testing\TestCase class, which brings in quite a
few goodies.

The first thing the two TestCase classes (yours and its abstract parent) do is handle
booting the Illuminate application instance for you, so you have a fully bootstrapped
application available. They also “refresh” the application between each test, which
means they’re not entirely re-creating the application between tests, but rather making
sure you don’t have any data lingering.

The parent TestCase also sets up a system of hooks that allow callbacks to be run
before and after the application is created, and imports a series of traits that provide
you with methods for interacting with every aspect of your application. These traits
include InteractsWithContainer, MakesHttpRequests, InteractsWithConsole, and
more, and they bring in a broad variety of custom assertions and testing methods.

As a result, your application tests have access to a fully bootstrapped application
instance, application-test-minded custom assertions, and a DOM crawler, with a ser-
ies of simple and powerful wrappers around each to make them easy to use.

That means you can write $this->visit('/')->see('Laravel') and know that
your application is actually behaving as if it were responding to a normal HTTP
request, and that the response is being passed to a DOM crawler that is checking for
that text for you. It’s pretty powerful stuff, considering how little work you had to do
to get it running.

So, let’s look at some basic methods this opens up to you.

Different trait structure in Laravel 5.1

In Laravel 5.1, the structure of testing traits and how the testing
framework is organized is very different from what I've described
here; however, the functionality is still the same.

Application Testing | 267

“Visiting” Routes

The most complex of Laravel’s application testing functionality is also the simplest—
and most powerful—to use. Using these methods, your tests can interact with (“visit”)
pages in your application like never before:

Sthis->visit(Suri)
Visiting a route is at the core of Laravel’s application testing. When you call
$this->visit('dashboard'), youre mimicking the action the framework takes
when a web request comes in for that same route. The application will create a
request object for that request, handle it like normal, and store the response
object (an instance of Illuminate\Http\Response) in $this->response.

This is the same response object that would normally be returned and displayed
to the browser, but it’s just cached for Laravel’s application testing assertions to
check against (or for your code, if you want to interact with the response).

On its own, visiting doesn't do much, but now that you have a response cached in
$this->response, you can write assertions against it.

What Makes visit() Different from the Other Visiting Methods

We're about to cover call(), and get(), and many other methods related to visiting
routes. But they’re much simpler than visit(), and it's worth seeing just what makes
visit() different.

Here’s a shortened definition of the visit() method:

public function visit($uri)

{

Suri = Sthis->prepareUrlForRequest($uri);

Sthis->call(Smethod, $Suri, S$parameters, $cookies, $files);
Sthis->clearInputs()->followRedirects()->assertPagelLoaded(Suri);
Sthis->currentUri = $this->app->make('request')->fullUrl();

Sthis->crawler = new Crawler(
$this->response->getContent(),
S$this->currentUri

);

return $this;

}

I know this is a lot to take in, so just suffice it to say visit() is doing a lot. When you
want to check that a page loads, when you want to crawl a page, when you want to do
all this nearly magical application testing, use visit().

268 | Chapter 12: Testing

If you just want to get a response and nothing else, or if youre using more traditional
checks to POST to a page and assert certain behavior happens or something else, you'll
be fine using the simpler methods like call().

Sthis->call(smethod, Suri, Sparams = [], Scookies = [], Sfiles = [], Sserver
= [], Scontent = null)
If you need to make calls against the server without worrying about crawling the
returned DOM—for example, if you want to assert that a given POST has certain
effects—there’s a method for that. visit() is actually based on call(), but you
can also use call() directly.

As you can see from the method definition, we have a lot of options available to
us when we use call()—the HTTP method, the URI, parameters, cookies, and
files, all pretending to be sent along with our call.

Just like when you use visit(), these requests will make a request and store the
response on $this->response, but they wont enable any DOM-crawling-based
assertions like see().

Sthis->get(Suri, Sheaders = []), ->post(Suri, Sdata = [], Sheaders = []),
->put(Suri, Sdata = [], $headers = []), ->patch(), and ->delete()
These are a series of convenience helpers that wrap call(); they're all just short-
cuts to passing a particular string to the first parameter of call(), the HTTP
method. Otherwise, you can use them exactly the same as you would call().

$this->json(Smethod, Suri, Sdata = [], Sheaders = [])
Just like get(), post(), and the other methods just mentioned json() is a wrap-
per around call(). It converts the passed data to JSON and adds JSON request
headers, and then passes it all into call().

json() is exceptionally useful, unsurprisingly, for testing JSON APIs. Because
you can even define your headers and data, you can use this method to fully
interact with your REST APIs in your tests, like we saw in “A Sample JSON Test”
on page 264.

Sthis->followRedirects()
There’s actually another thing that visit() does that call() doesn't: it tells Lara-
vel to follow any redirects using followRedirects(), and then checks that the
eventual landing page loaded using assertPagelLoaded().

Without followRedirects(), the response you'll get after calling a redirected
page will just be the contents of the redirect, not the page that you were being
redirected to.

Application Testing | 269

Custom Application Testing Assertions

So, what are the new application testing assertions we've gained? There are quite a
few. Let’s start simple and move up:

$this->assertPageloaded()
assertPageloaded() checks that you got an HTTP status code of 200 when load-
ing the page.

$this->see() and ->dontSee()
Like we saw earlier in this chapter, see() takes a string and uses a regular expres-
sion to check that that string is present somewhere on the page that’s rendered.
dontSee() is its inverse.

$this->seelLink() and ->dontSeelLink()
seeLink() takes two parameters: first, the link text to find, and second, option-
ally, the URL. dontSeeLink() is its inverse.

$this->seeHeader()
seeHeader () takes two parameters: first, the name of the header, and second,
optionally, the value of the header.

$this->seeCookie()
seeCookie() takes two parameters: first, the name of the cookie, and second,
optionally, the value of the cookie.

Sthis->seeInField() and ->dontSeeInField()
seeInField() takes two parameters: first, the name or ID of the input or
textarea to look at, and second, the value to look for. dontSeeInField() is its
inverse.

$this->seeIsChecked() and ->dontSeeIsChecked()
seeIsChecked() takes one parameter, the name or ID of the checkbox input to
inspect. dontSeeIsChecked() is its inverse.

$this->seeIsSelected() and ->dontSeelIsSelected()
seeIsSelected() takes two parameters: first, the name or ID of the select box to
inspect, and second, the value to check whether it is set to. dontSeeIsSelected()
is its inverse.

S$this->seePagels()
seePageIs() asserts that the current loaded page URI is the same as the parame-
ter you pass to it.

270 | Chapter 12: Testing

$this->seeInDatabase() and ->dontSeeInDatabase()
To check for records in the database table, pass in the table name as the first
parameter of seeInDatabase() and the data you're looking for as the second:

public function test_database_has_user_after_registration()

{
Sthis
->visit('register')
->f{llForm([
'email' => 'matt@mattstauffer.co'
D
->submitForm();
$this->seeInDatabase('emails', ['email' => 'matt@mattstauffer.co']);
}

As you can see, the second “data” parameter of seeInDatabase() is structured
like a SQL WHERE statement—you pass a key and a value (or multiple keys and
values), and then Laravel looks for any records in the specified database table that
match your key(s) and value(s).

As always, dontSeeInDatabase() is the inverse.

JSON and Non-visit() Application Testing Assertions

The remaining application assertions are tied less closely to the visit() methodology
and a little more closely to the implementation details of your application. Quite a
few of these are also often used for testing JSON APIs:

$this->seeJson(), ->dontSeeJson(), ->seeJsonEquals()
seeJson() with no parameters checks to make sure that the content of the
response was valid JSON. Its optional parameter represents the data that youre
checking for. For instance, in the following example we receive a response, and
were checking both that it is valid JSON and that it contains a key/value pair of
username/mattstauffer somewhere in it:

public function test_api_returns_certain_json()

{
Sthis->json('get', 'users');
$this->seeJson(['username' => 'mattstauffer']);

}

As always, seeJson() has an inverse, dontSeeJson(). dontSeeJson() still
expects valid JSON, but it expects to not see anything passed in as data.

Finally, if you want to check that the JSON maps exactly to your data, you can try
seeJsonEquals(), which compares a data array to the JSON response and throws
an exception if they don’t match exactly.

Application Testing | 271

$this->assertResponseOK() and ->assertResponseStatus($status)

After any call() or visit(), one valuable assertion is just that the page loaded
with the HTTP status you expected. assertResponseOK() asserts that the page
returned a 200 HTTP status code, but you can also pass a specific status that
you expect:

public function test_pages_load_the_way_we_want()

{
S$this->get('people');
$this->assertResponseOK();
S$this->call('post', 'owners');
$this->assertResponseStatus(405); // Method not allowed
}

You could even check the authorization settings for a particular route by assert-
ing that it gives a 401 (Unauthorized) status code, then authenticate and assert it
gives a 200 status code.

Sthis->assertViewHas(Skey, Svalue = null), ->assertViewHasAll(array Sbind
ings), ->assertViewMissing(Skey)

Sometimes the only option you have is to assert that you see a particular phrase
on a page using see(), but what's more likely is that you're really checking that
the correct data was passed to your view. Thankfully, you can check that directly
with these methods.

assertViewHas() checks that data with a particular key was sent to the most
recently retrieved view, and if you pass the assertion a second parameter, it will
assert that that data was equal to it:

// Route
Route::get('test', function () {
return view('test')->with('foo', 'bar');

b

// Test

public function test_view_gets_data()

{
Sthis->get('test');
Sthis->assertViewHas('foo'); // true
$this->assertViewHas('foo', 'bar'); // true
Sthis->assertViewHas('foo', 'baz'); // false

}

You can also check for multiple view variables at once using assert
ViewHasAll(), which expects an array of key/value pairs:
// Route

Route::get('test', function () {
return view('test')

272

| Chapter 12: Testing

->with('foo', 'bar')
->with('baz', 'qux');

b
// Test

public function test_view_gets_data()

{
Sthis->get('test');
Sthis->assertViewHasAll([
'foo' => 'bar',
'baz' => 'qux'
s // true
}

You can ensure that the view hasn’t been passed a particular key by passing that
key to assertViewMissing().

In Laravel 5.3, as shown in the following example, you can pass a closure to the
second parameter of assertViewHas(). This gives you the opportunity to per-
form much more nuanced checks of the data your view is provided:

public function test_events_are_owned_by user_1()

{
S$this->get('events');
Sthis->assertViewHas('events', function (Sevents) {
return $events->reject(function (Sevent) {
return $Sevent->user_id === 1;
})->isEmpty();
b;
}

Sthis->assertRedirectedTo(), ->assertRedirectedToRoute(),
->assertRedirectedToAction()
If you want to ensure that the user not only ends up at a particular page
but was sent there as a redirect, these methods provide that functionality. You
can check by URL (to()), route name (toRoute()), or controller and method
(toAction()):

// Route
Route::get('redirector', function () {
return redirect('/');

s

Route::get('/', 'HomeController@index')->name('home');

// Test

public function test_redirector_works()

{
S$this->get('redirector');
$this->assertRedirectedTo('/');
Sthis->assertRedirectedToRoute('home');

Application Testing | 273

$this->assertRedirectedToAction('HomeController@index');

}

$this->assertSessionHas(Skey, Svalue = ''),
->assertSessionHasAll(Sbindings), ->assertSessionHasErrors($hindings =
[], Sformat = null), ->assertHasOldInput()

These methods make it easy to check for specific values in the session.
assertSessionHas() and assertSessionHasAll() are shaped just like
assertViewHas() and assertViewHasAll().

When passed just one parameter, assertSessionHas() asserts that there is a ses-
sion value with that key; if you pass it two parameters, it asserts that the value of
that session key is equal to the session parameter. assertSessionHasAll() takes
an array of key/value pairs and asserts that each key exists in the session and is
set to its corresponding value:

public function test_session_has_stuff()
{
Session::put('foo', 'bar');
Session::put('baz', 'qux');
S$this->assertSessionHas('foo');
$this->assertSessionHas('foo', 'bar');
$this->assertSessionHasAll([
'foo' => 'bar',
'baz' => 'qux'
D;
}

assertSessionHasErrors() with no parameters asserts that there’s at least one
error set in Laravel’s special errors session container. Its first parameter can be
an array of key/value pairs that define the errors that should be set and its second
parameter can be the string format that the checked errors should be formatted
against, as demonstrated here:

public function test_posting_empty_errors_out()

{
// assuming the "/form" route requires an email field, and we're
// posting an empty form to it to trigger the error
$this->post('form', [1);
Sthis->assertSessionHasErrors();
$this->assertSessionHasErrors(['email' => 'The email field is required.']);
Sthis->assertSessionHasErrors(
['email' => '<p>The email field is required.</p>'],
'<p>:message</p>"'
);
}

Finally, assertHasOldInput() asserts that some old input has been saved from a
form that was submitted, likely using redirect()->withOldInput().

274

| Chapter 12: Testing

Clicking and Forms

Let’s move into some magical yet terrifying powers: navigating through forms, click-
ing and filling and unchecking, and even attaching files. Laravel provides the follow-
ing methods for working with forms:

Sthis->click(Sname)
Given a link with the provided $name as either the body of the link or its name or
ID, click() grabs the URI from that link and visits it.

Sthis->type(Stext, Selement)
Given an input on the page with the provided Selement as the name or ID,
type() “types” the provided text into it.

Manipulating Forms

With this talk of clicking links and typing into form fields, it may seem like Laravel is
running some sort of JavaScript-based application test where it’s actually driving a
browser interacting with the page. But it’s not, really.

Its storing up this “input” you're creating, and if at any point you “submit” the form,
it'll gather together your input and post it to the target of the form. In theory it’s very
different from the user’s experience, but in practice it’s a beautifully eloquent syntax
for writing tests that mimic form submissions.

$this->check(sSelement)
Given a checkbox on the page with the provided Selement as the name or ID,
check() “checks” it.

Sthis->uncheck(selement)
Given a checkbox on the page with the provided Selement as the name or ID,
uncheck() “unchecks” it.

Sthis->select(Soption, Selement)
Given a select box on the page with the provided Selement as the name or ID,
select() sets its value to Soption.

Sthis->attach($filePath, Selement)
Given a file upload input on the page with the provided selement as the name or
ID, attach() attaches a file from the given local file path to it, marked to upload
when the form is submitted.

Application Testing | 275

Sthis->press(SbuttonText)
Given a button on the page with the provided text, press() submits the form
that button is a part of.

Sthis->submitForm(ShuttonText, Sinputs = [], Suploads = [])
Given a button on the page with the provided text, submitForm() submits the
form that button is a part of. You can also optionally set or override all of the
inputs and file uploads using the second and third parameters.

Sthis->fillForm(SbuttonText, Sinputs = [])
Given a button on the page with the provided text, fillForm() finds the form
that button is a part of and sets all the values to be the provided values.

Sthis->clearInputs()
clearInputs() wipes any inputs or uploads that have been previously set.

Jobs and Events

We'll cover these job- and event-related tests in more depth in Chapter 16, but lets
take a quick look at how they work:

S$this->expectsEvents(SeventClassName)
If you want to assert that a particular class of event was fired during your test,

you can pass the class name to expectsEvents():

public function test_usersubscribed_event_fires_when_subscribing()

{
Sthis->expectsEvents(App\Events\UserSubscribed::class);

Sthis->visit('subscribe')->type('me@me.com', 'email')->press('Subscribe');

}

$Sthis->withoutEvents()
withoutEvents() is not actually an assertion; rather, it disables Laravel’s event
handling system so that, during this test, you don’t have to worry about the
effects of any of your events taking place—for example, sending any emails or
writing any logs.

Sthis->expectsJobs()
If you want to assert that a particular class of job was fired during your test, you
can pass that class name to expectsJobs():

public function test_number_of_subscriptions_crunches_reports()

{
$this->expectsJobs(App\Jobs\CrunchReports::class);

Sthis->visit('subscribe')->type('me@me.com', 'email')->press('Subscribe');

276 | Chapter 12: Testing

Authentication and Sessions

Laravel makes it simple to set up a test environment for your tests, even making it
easy to control the session and authenticate as a given user:

Sthis->session(['key' => 'value'])
session() starts the session and saves any key/value pairs of data in the provided
array to the session. You can run this multiple times during a test to add different
pieces of session data, if youd like.

Sthis->flushSession()
flushSession() wipes all of the data in the current session.

Sthis->be(Sauthenticatable)
be() takes any object that fulfills the I1luminate\Contracts\Auth\Authenticat
able interface (including, of course, the base App\User class) and authenticates
every page request or interaction in the test as that user. This means you can
write tests like this:

public function test_members_cant_see_admin_dashboard()

{
S$member = factory(\App\User::class, 'member')->create();
$this->be($member);
$this->get('admin-dashboard');
$this->assertResponseStatus(403);

}

public function test_admins_can_see_admin_dashboard()

{
$admin = factory(\App\User::class, 'admin')->create();
$this->be($admin);
$this->get('admin-dashboard');
$this->assertResponseOK();

}

Artisan and Seed

Almost done. There are two more test methods you might want to take a look at:

Sthis->artisan(Scommand, Sparameters = [])
If you want to use an Artisan command in a test, artisan() makes it easy. Just
pass the command name as the first parameter and, optionally, pass any parame-
ters as an array as the second.

Artisanand Seed | 277

Doing so will save the response code to $this->code in case youd like to assert
against it, but it will also return it. So, this functions the same as
Artisan::call() with the addition of saving the response to $this->code:

public function test_returns_certain_code()

{
Sthis->artisan('do:thing', ['--flagOfSomeSort' => true]);
$this->assertEquals(0, Sthis->code); // 0 means "no errors were returned"
}
Sthis->seed(SseederClassName = 'DatabaseSeeder')

If you want to seed your database, seed() will do that for you; and if you pass an
argument, you can choose to only run a single seeder.

seed() provides the same functionality as running $this->artisan('db:seed").

Model factories

Model factories are amazing tools that make it easy to seed
randomized, well-structured database data for testing (or other
purposes).

We've already covered them in depth, so check out “Model Facto-
ries” on page 143 to learn more.

Mocking

Mocks (and their brethren, spies and stubs and dummies and fakes and who knows
what else) are common tools in testing. I won't go into great detail here, but it’s
unlikely you can thoroughly test an application of any size without mocking at least
one thing or another.

Essentially, mocks and other similar tools make it possible to create an object that in
some way mimics a real class, but for testing purposes isn’t the real class. Sometimes
this is done because the real class is too difficult to instantiate just to inject it into a
test, or maybe the real class communicates with an external service.

As you can probably tell from these examples, Laravel encourages working with the
real application as much as possible—which means avoiding too great of a depend-
ence on mocks. But they have their place, which is why Laravel includes Mockery, a
mocking library, out of the box.

Mockery

Mockery allows you to quickly and easily create mocks from any PHP class in your
application. Imagine you have a class that depends on a Slack client, but you don’t

278 | Chapter 12: Testing

want the calls to actually go out to Slack. Mockery makes it simple to create a fake
Slack client to use in your tests, like you can see in Example 12-6.
Example 12-6. Using Mockery in Laravel

// app/SlackClient.php
class SlackClient

{
public function send(Smessage, $channel)
{
// Actually sends a message to Slack
}
}

// app/Notifier.php
class Notifier

{
private $slack;
public function __construct(SlackClient $slack)
{
$this->slack = $slack;
}
public function notifyAdmins($message)
{
$this->slack->send(Smessage, 'admins');
}
}

// tests/NotifierTest.php
public function test_notifier_notifies_admins()

{
$slackMock = Mockery: :mock(SlackClient::class)->shouldIgnoreMissing();
Snotifier = new Notifier($slackMock);
Snotifier->notifyAdmins('Test message');

1

There are a lot of moving pieces here, but let’s break it down. We have a class named
Notifier that we're testing. It has a dependency named SlackClient that does some-
thing that we don’t want it to do when were running our tests: it sends actual Slack
notifications. So were going to mock it.

We use Mockery to get a mock of our SlackClient class. If we don't care about what
happens to that class—if it should simply exist to keep our tests from throwing errors
—we can just use shouldIgnoreMissing():

$slackMock = Mockery: :mock(SlackClient::class)-shouldIgnoreMissing();

Mocking | 279

No matter what Notifier calls on $slackMock, it'll just accept it and return null.

But take a look at test_notifier_notifies_admins(). At this point, it doesn’t
actually fest anything.

We could just keep shouldIgnoreMissing() and then write some assertions below it.
That’s usually what we do with shouldIgnoreMissing(), which makes this object a
“fake” or a “stub”

But what if we want to actually assert that a call was made to the send() method of
SlackClient? Thats when we drop shouldIgnoreMissing() and reach for the
should* methods (Example 12-7).

Example 12-7. Using the shouldReceive method on a Mockery mock

public function test_notifier_notifies_admins()

{
$slackMock = Mockery::mock(SlackClient::class);
$slackMock->shouldReceive('send')->once();
$notifier = new Notifier($slackMock);
Snotifier->notifyAdmins('Test message');

}

shouldReceive('send')->once() is the same as saying “assert that $slackMock
will have its send() method called once and only once” So, we're now asserting that
Notifier, when we call notifyAdmins(), must make a single call to the send method
on SlackClient.

We could also use something like shouldReceive('send')->times(3) or
shouldReceive('send')->never().

What if we wanted to use the IoC container to resolve our instance of the Notifier?
This might be useful if Notifier had several other dependencies that we didn’t need
to mock.

We can do that! We just use the instance() method on the container, as in
Example 12-8, to tell Laravel to provide an instance of our mock to any classes that
request it (which, in this example, will be Notifier).

Example 12-8. Binding a Mockery instance to the container
public function test_notifier_notifies_admins()
{

$slackMock = Mockery::mock(SlackClient::class);

$slackMock->shouldReceive('send')->once();

app()->instance(SlackClient::class, $slackMock);

280 | Chapter 12: Testing

Snotifier = app(Notifier::class);
Snotifier->notifyAdmins('Test message');

}

There’s a lot more you can do with Mockery: you can use spies, and partial spies, and
much more. Going deeper into how to use Mockery is out of the scope of this book,
but I encourage you to learn more about the library and how it works.

Mocking Facades

Let’s say you have a controller method that calls a facade. Now, you want to test that
controller method, and assert that that facade call should be made. How do you do it?
Thankfully, it's simple: treat the facade like an instance of Mockery in your test.
Example 12-9 shows how this works.

Example 12-9. Mocking a facade

// PeopleController
public function index()
{
return Cache::remember('people', function () {
return Person::all();
b;
}

// PeopleTest
public function test_all_people_route_should_be_cached()

{
$person = factory(Person::class)->make();
Cache: :shouldReceive(' remember"')
->once()
->andReturn(collect([$person]));
Sthis->visit('people')->seelJson(['name' => Sperson->name]);
}

As you can see, you can use methods like shouldReceive() on the facades, just like
you do on a Mockery object.

As of Laravel 5.3, you can also use your facades as spies, which means you can
set your assertions at the end and use shouldHaveReceived() instead of
shouldReceive(). Example 12-10 illustrates this.

Mocking | 281

Example 12-10. Facade spies

public function test_queue_job_should_be_pushed_after_regisration()

{
Cache::spy();

$this->post('register', ['email' => 'joaquin@me.com']);

Cache: :shouldHaveReceived('push')
->with(SendWelcomeEmail::class, ['email' => 'joaquin@me.com']);

}

TL;DR

Laravel can work with any modern PHP testing framework, but it brings in a lot of
framework-specific power if you use PHPUnit and if your tests extend Laravel’s Test
Case. Laravel’s application testing framework makes it simple to send fake requests
through your application and inspect the results, even “typing” in inputs and “click-
ing” buttons before submitting a form.

The TestCase class brings in a group of methods that make it easy to customize how
your tests interact with your database, disable the effects of events, and make asser-
tions against framework-level structures like jobs and facades.

Laravel brings in Mockery in case you need mocks, stubs, spies, dummies, or any-
thing else, but the testing philosophy of Laravel is to use real collaborators as much as
possible. Don’t fake it unless you have to.

282 | Chapter 12: Testing

CHAPTER 13
Writing APIs

One of the most common tasks Laravel developers are given is to create an API, usu-
ally JSON and REST or REST-like, that allows third parties to interact with the Lara-
vel application’s data.

Laravel makes it incredibly easy to work with JSON, and its resource controllers are
already structured around REST verbs and patterns. In this chapter we’ll learn about
some basic API-writing concepts, the tools Laravel provides for writing APIs, and
some external tools and organizational systems you’ll want to consider when writing
your first Laravel APL

The Basics of REST-Like JSON APIs

Representational State Transfer (REST) is an architectural style for building APIs.
Technically, REST is a broad definition that could apply to almost the entirety of the
Internet, so don't let yourself get overwhelmed by the definition or caught in an argu-
ment with a pedant. When we talk about RESTful or REST-like APIs in the Laravel
world, were generally talking about APIs with a few common characteristics:

o Structured around “resources” that can be uniquely represented by URIs,
like /cats for all cats, /cats/15 for a single cat with the ID of 15, etc.

o Interactions with resources primarily take place using HTTP verbs (GET /
cats/15 versus DELETE /cats/15)

o Stateless, meaning there’s no persistent session authentication between requests;
each request must uniquely authenticate itself

283

o Cacheable and consistent, meaning each request (except for a few authenticated-
user-specific requests) should return the same result regardless of who the
requester is

¢ Return JSON

The most common API pattern is to have a unique URL structure for each of your
Eloquent models that’s exposed as an API resource, and allow for users to interact
with that resource with specific verbs and get JSON back. Example 13-1 shows a few
possible examples.

Example 13-1. Common REST API endpoint structures

GET /api/cats

[
{
id: 1,
name: 'Fluffy’
1,
{
id: 2,
name: 'Killer'
}
1
GET /api/cats/2
{
id: 2,
name: 'Killer'
}

DELETE /api/cats/2
deletes cat

POST /api/cats with body:
{

}

(creates new cat)

name: 'Mr Bigglesworth'

PATCH /api/cats/3 with body:
{

}
(updates cat)

name: 'Mr. Bigglesworth'

You can see the basic set of interactions we are likely to have with our APIs. Let’s dig
into how to make them happen with Laravel.

284 | Chapter 13: Writing APIs

Controller Organization and JSON Returns

Laravel’s resource controllers are structured very similarly to a RESTful API control-
ler, so let’s get started there. First we'll create a new controller for our resource, which
we'll route at /api/dogs:

php artisan make:controller Api/\DogsController --resource

Remember, the --resource flag generates a resource controller instead of a plain
controller.

Escaping slashes in Artisan commands

Note that in order to put the DogsController in the Api name-

space, we had to escape the \ namespace backslash with a forward
slash.

Example 13-2 shows what that controller will look like.

Example 13-2. A generated resource controller
<?php

namespace App\Http\Controllers\Api;

use Illuminate\Http\Request;

use App\Http\Requests;
use App\Http\Controllers\Controller;

class DogsController extends Controller
{
/'k*
* Display a listing of the resource.
*

* @return \Illuminate|Http|Response
*/
public function index() {}

/**
* Show the form for creating a new resource.
*

* @return |Illuminate|Http|Response
*/
public function create() {}

/**
* Store a newly created resource in storage.
*

* @param \Illuminate|Http|Request Srequest

Controller Organization and JSON Returns | 285

* @return \Illuminate|Http|Response
*/
public function store(Request $request) {}

/'k*
* Display the specified resource.
*

* @param 1int Sid
* @return |Illuminate|Http|Response
*/

public function show($id) {3}

/'k*
* Show the form for editing the specified resource.
*

* @param 1int Sid
* @return \Illuminate|Http|Response
*/

public function edit($id) {3}

/'k*
* Update the specified resource in storage.
*

* @param \Illuminate|Http|Request S$request
* @aram int Sid
* @return \Illuminate|Http|Response
*/
public function update(Request Srequest, $id) {}

/**
* Remove the specified resource from storage.
*

* @aram int Sid
* @return \Illuminate|Http|Response
*/
public function destroy($id) {}
}

The docblocks pretty much tell the story. index() lists all of the dogs, show() lists a
single dog, create() shows the create view, store() stores a dog, edit() shows the
edit view, update() updates a dog, and destroy() removes a dog.

Since this is an API, we can delete create() and edit() off the bat; were not show-
ing views here.

Let’s quickly make a model and a migration so we can work with it:

php artisan make:model Dog --migration
php artisan migrate

Great! Now we can fill out our controller methods.

286 | Chapter 13: Writing APIs

We can take advantage of a great feature of Eloquent here: if you echo an Eloquent
results collection, it'll automatically convert itself to JSON (using the __toString()
magic method, if youre curious). That means if you return a collection of results
from a route, you'll in effect be returning JSON.

So, as Example 13-3 demonstrates, this will be some of the simplest code you’ll ever
write.

Example 13-3. A sample resource controller for the Dog entity

class DogsController extends Controller

{
public function index()
{
return Dog::all();
}
public function store(Request $request)
{
Dog: :create(Srequest->all());
}
public function show($id)
{
return Dog::findOrFail($id);
}
public function update(Request Srequest, $id)
{
$dog = Dog::findOrFail($id);
$dog->update(Srequest->all());
}
public function destroy($id)
{
$dog = Dog::findOrFail($id);
$dog->delete();
}
}

Example 13-4 shows how we can link this up in our routes file.

Example 13-4. Binding the routes for a resource controller

// Routes.php
Route::group(['prefix' => 'api', 'namespace' => 'Api'], function () {
Route::resource('dogs', 'DogsController');

s

Controller Organization and JSON Returns | 287

There you have it! Your first RESTful API in Laravel.

Of course, we'll need much more nuance: pagination, sorting, authentication, more
defined response headers. But this is the foundation of everything else.

Reading and Sending Headers

REST APIs often read, and send, non-content information using headers. For exam-
ple, any request to GitHub’s API will return headers detailing the current user’s rate
limiting status:

X-RateLimit-Limit: 5000

X-RateLimit-Remaining: 4987
X-RateLimit-Reset: 1350085394

X-* headers

You might be wondering why the GitHub rate limiting headers are
prefixed with X-, especially if you see them in the context of other
headers returned with the same request:

HTTP/1.1 200 OK

Server: nginx

Date: Fri, 12 Oct 2012 23:33:14 GMT
Content-Type: application/json; charset=utf-8
Connection: keep-alive

Status: 200 OK

ETag: "a00049ba79152d03380c34652f2cb612"
X-GitHub-Media-Type: github.v3
X-RateLimit-Limit: 5000
X-RateLimit-Remaining: 4987
X-RateLimit-Reset: 1350085394

Content-Length: 5

Cache-Control: max-age=0, private, must-revalidate
X-Content-Type-Options: nosniff

Any header whose name starts with X- is a header that’s not in the
HTTP spec. It might be entirely made up (e.g., X-How-Much-Matt-
Loves-This-Page), or part of a common convention that hasn’t
made it into the spec yet (e.g., X-Requested-With).

Similarly, many APIs allow developers to customize their requests using request
headers. For example, GitHub’s API makes it easy to define which version of the API
youd like to use with the Accept header:

Accept: application/vnd.github.v3+json

If you were to change v3 to v2, GitHub would pass your request to version 2 of its
API instead.

288 | Chapter 13: Writing APIs

Let’s learn quickly how to do both in Laravel.

Sending Response Headers in Laravel

We already covered this topic quite a bit in Chapter 10, but here’s a quick refresher.
Once you have a response object, you can add a header using header (SheaderName,
SheaderValue), as seen in Example 13-5.

Example 13-5. Adding a response header in Laravel

Route::get('dogs', function () {
return response(Dog::all())
->header('X-Greatness-Index', 9);

s

Nice and easy.

Reading Request Headers in Laravel

If we have an incoming request, it’s also simple to read any given header.
Example 13-6 illustrates this.

Example 13-6. Reading a request header in Laravel

Route::get('dogs', function (Request $request) {
echo Srequest->header('Accept');

s

Now that you can read incoming request headers and set headers on your API
responses, let’s take a look at how you might want to customize your API.

Eloquent Pagination

Pagination is one of the first places where most APIs need to consider special instruc-
tions. Eloquent comes out of the box with a pagination system that hooks directly
into the query parameters of any page request. We already covered the paginator
component a bit in Chapter 5, but here’s a quick refresher.

Any Eloquent call provides a paginate() method, which you can pass the number of
items youd like to return per page. Eloquent then checks the URL for a page query
parameter and, if it’s set, treats that as an indicator of how many pages the user is into
a paginated list.

To make your API route ready for automated Laravel pagination, use paginate()
instead of all() or get() in your route; something like Example 13-7.

Eloquent Pagination | 289

Example 13-7. A paginated API route

Route::get('dogs', function () {
return Dog: :paginate(20);
s

We've defined that Eloquent should get 20 results from the database. Depending on
what the page query parameter is set to, Laravel will know exactly which 20 results to
pull for us:

GET /dogs - Return results 1-20
GET /dogs?page=1 - Return results 1-20
GET /dogs?page=2 - Return results 21-40

Note that the paginate() method is also available on query builder calls, as seen in
Example 13-8.

Example 13-8. Using the paginate() method on a query builder call

Route::get('dogs', function () {
return DB::table('dogs')->paginate(20);
s

Here’s something interesting, though: this isn’t just going to return 20 results when
you convert it to JSON. Instead, it'’s going to build a response object that automati-
cally passes some useful pagination-related details to the end user, along with the
paginated data. Example 13-9 shows a possible response from our call, truncated to
only three records to save space.

Example 13-9. Sample output from a paginated database call

{

"total": 50,

"per_page": 3,

"current_page": 1,

"last_page": 17,

"next_page_url": "http://myapp.com/api/dogs?page=2",
"prev_page_url": null,

"from": 1,
"to": 3,
"data": [
{
'name': 'Fido'
1,
{
'name': 'Pickles'
1,
{
'name': 'Spot'
}

290 | Chapter 13: Writing APIs

1
}

Sorting and Filtering

While there is a convention and some built-in tooling for pagination in Laravel, there
isn't any for sorting, so you have to figure that out on your own. I'll give a quick code
sample here, and I'll style our query parameters similarly to the JSON API spec
(described in the following sidebar).

The JSON API Spec

The JSON API is a standard for how to handle many of the most common tasks in
building JSON-based APIs: filtering, sorting, pagination, authentication, embedding,
links, metadata, and more.

Laravel’s default pagination doesn’t work exactly according to the JSON API spec, but
it gets you started in the right direction. And the majority of the rest of the JSON API
spec is something you’ll just have to choose (or not) to implement manually.

For example, here’s a piece of the JSON API spec that helpfully handles how to struc-
ture data versus error returns:

A document MUST contain at least one of the following top-level members:

>«

« data: the document’s “primary data”
« errors: an array of error objects

« meta: a meta object that contains non-standard meta-information.

The members data and errors MUST NOT coexist in the same document.

Be warned, however: it's wonderful to have the JSON API as a spec, but it also takes
quite a bit of groundwork to get running with it. We won’t use it entirely in these
examples, but I'll use its general ideas as inspiration.

Sorting Your API Results

First, let’s set up the ability to sort our results. We start in Example 13-10 with the
ability to sort by only a single column, and in only a single direction.

Example 13-10. Simplest API sorting

// Handles /dogs?sort=name

Route::get('dogs', function (Request $request) {
// Get the sort query parameter (or fall back to default sort "name"
$sortCol = $request->input('sort', 'name');

Sorting and Filtering | 291

http://jsonapi.org/

return Dog::orderBy($sortCol)->paginate(20);
b

We add the ability to invert it (e.g., ?sort=-weight) in Example 13-11.

Example 13-11. Single-column API sorting, with direction control

// Handles /dogs?sort=name and /dogs?sort=-name

Route::get('dogs', function (Request $request) {
// Get the sort query parameter (or fall back to default sort "name"
$sortCol = $request->input('sort', 'name');

// Set the sort direction based on whether the key starts with -
// using Laravel's starts_with() helper function

$sortDir = starts_with($SsortCol, '-') ? 'desc' : 'asc';

$sortCol = ltrim(S$sort, '-');

return Dog::orderBy($sortCol, $sortDir)
->paginate(20);
s

Finally, we do the same for multiple columns (e.g., ?sort=name,-weight) in
Example 13-12.

Example 13-12. JSON API-style sorting

// Handles ?sort=name, -weight

Route::get('dogs', function (Request $request) {
// Grab the query parameter and turn it into an array exploded by ,
$sorts = explode(',', S$request->input('sort', ''));

// Create a query
$Squery = Dog::query();

// Add the sorts one by one

foreach ($sorts as $sortCol) {
$sortDir = starts_with($sortCol, '-') ? 'desc' : 'asc';
$sortCol = ltrim(S$sort, '-');

$query->orderBy($sortCol, $sortDir);
}

// Return
return $query->paginate(20);
b

As you can see, it’s not the simplest process ever, and you’ll likely want to build some
helper tooling around the repetitive processes, but we’re building up the customiza-
bility of our API piece by piece using logical and simple features.

292 | Chapter 13: Writing APIs

Filtering Your APl Results

Another common task in building APIs is filtering out all but a certain subset of data.
For example, the client might ask for a list of the dogs that are female.

The JSON API doesn’t give us any great ideas for syntax here, other than that we
should use the filter query parameter. Let’s think along the lines of the sort syntax,
where we're putting everything into a single key—maybe ?filter=sex:female. You
can see how to do this in Example 13-13.

Example 13-13. Single filter on API results

Route::get('dogs', function (Request $request) {
Squery = Dog::query();

if (Srequest->has('filter')) {
Tist(Scriteria, $value) = explode(':', Srequest->input('filter'));
$query->where(Scriteria, $value);

}

return $query->paginate(20);
s

And, just for kicks, in Example 13-14 we allow for multiple filters, like ?fil
ter=sex:female,color:brown.

Example 13-14. Multiple filters on API results

Route::get('dogs', function (Request Srequest) {
$Squery = Dog::query();

if (Srequest->has('filter')) {
$filters = explode(',', $Srequest->input('filter'));
foreach ($filters as $filter) {
list(Scriteria, $value) = explode(':', S$filter);
Squery->where(Scriteria, $value);

}

return $query->paginate(20);
s

Transforming Results

We've covered how to sort and filter our result sets. But right now, were relying on
Eloquent’s JSON serialization, which means we get every field on every model.

Transforming Results | 293

Eloquent provides a few convenience tools for defining which fields to show when
you're serializing an array. You can read more in Chapter 8, but the gist is that if you
set a $hidden array property on your Eloquent class, any field listed in that array will
not be shown in the serialized model output. You can alternatively set a $visible
array that defines the fields that are allowed to be shown. You could also either
overwrite or mimic the toArray() function on your model, crafting a custom output
format.

Another common pattern is to create a transformer for each data type. There’s a fan-
tastic package for this, Fractal, that sets up a series of convenience structures and
classes for transforming your data, but let’s cover a simple implementation to show
what a transformer is and why you might want to do this.

Writing Your Own Transformer

The general concept of a transformer is that we are going to run every instance of our
model through another class that transforms its data to a different state. It might add
fields, rename fields, delete fields, manipulate fields, add nested children, or whatever
else. Let’s start with a simple example (Example 13-15).

Example 13-15. A simple transformer

Route: :get('users/{id}"', function (SuserId) {
return (new UserTransformer(User::findOrFail($userId)));

b
class UserTransformer
{
protected S$user;
public function __construct($user)
{
Sthis->user = Suser;
}
public function toArray()
{
return [
'id' => S$this->user->id,
'name' => sprintf(
"%s %s",
Sthis->user->first_name,
Sthis->user->last_name
)s
'friendsCount' => S$this->user->friends->count()
IH
}

294 | Chapter 13: Writing APIs

http://bit.ly/2fEt8Nr

public function toJson()

{
return json_encode($this->toArray());
}
public function __toString()
{
return $this->toJson();
}

(lassic transformers

A more classic transformer would probably offer a transform()
method that takes a $user parameter. This would likely spit out an
array or JSON directly.

However, I've been using this pattern, which we sometimes call
“API objects,” for a few years and really love how much more power
and flexibility it provides.

As you can see in Example 13-15, transformers accept the model they’re transforming
as a parameter and then manipulate that model—and its relationships—to create the
final output that you want to send to the API.

This gives you more control, isolates API-specific logic away from the model itself,
and allows you to provide a more consistent API even when the models and their
relationships change down the road.

Nesting and Relationships

Whether, and how, to nest relationships in APIs is an issue of much debate. Thank-
fully, people more experienced than me have written on this at length; I'd recommend
reading Phil Sturgeon’s Build APIs You Won't Hate (Leanpub) to learn more about this
and about REST APIs in general.

There are a few primary ways to approach nesting relationships. These examples will
assume your primary resource is a user and your related resource is a friend:

o Embed related resources directly in the primary resource (e.g., the users/5
resource has its friends nested in it).

« Embed just the foreign keys in the primary resource (e.g., the users/5 resource
has an array of friend IDs nested in it).

o Allow the user to query the related resource filtered by the originating resource
(e.g., /friends?user=5, or “give me all friends who are related to user #57).

o Create a subresource (e.g., /users/5/friends).

Nesting and Relationships | 295

https://apisyouwonthate.com/

o Allow optional embedding (e.g., /users/5 does not embed, but /users/5?
embed=friends does embed; so does /users/5?embed=friends,dogs).

Let’s assume for a minute that we want to (optionally) embed the relationships. How
would we do that? Our transformer example in Example 13-15 gives us a great head
start. Let’s adjust it in Example 13-16 to add optional embedding.

Example 13-16. Allowing for optional embedding of a resource in a transformer

Route::get('users/{id}', function (SuserId, Request Srequest) {
// Get the embeds query parameter and split by commas
Sembeds = explode(',', Srequest->input('embed', ''));
// Pass both user and embeds to the user transformer
return (new UserTransformer(User::findOrFail($userId), $embeds));

s

class UserTransformer
{
protected S$user;
protected $Sembeds;

public function __construct(Suser, $embeds = [])

{
Sthis->user = Suser;
Sthis->embeds = S$Sembeds;
}
public function toArray()
{
$append = [1;
if (in_array('friends', S$this->embeds)) {
// If you have more than one embed, you'll want to generalize this
$append['friends'] = $this->user->friends->map(function ($friend) {
return (new FriendTransformer($friend))->toArray();
b
}
return array_merge([
'id' => $this->user->id,
'name' => sprintf(
"%s %s",
Sthis->user->first_name,
Sthis->user->last_name
)
1, $append);
}

296 | Chapter 13: Writing APIs

WEe'll learn more about the map() functionality when we look at collections in Chap-
ter 17, but everything else in here should be pretty familiar.

In the route, we're splitting the embed query parameter by commas and passing it into
our transformer. Currently our transformer can just handle the friends embed, but
it could be abstracted to handle others. If the user has requested the friends embed,
the transformer maps over each friend (using the has many friends relationship on
the user model), passes that friend to the FriendTransformer, and embeds the array
of all transformed friends in the user response.

API Authentication with Laravel Passport

Most APIs require some form of authentication to access some or all of the data. Lar-
avel 5.2 introduced a simple “token” authentication scheme, which we’ll cover shortly,
but in Laravel 5.3 we got a new tool called Passport (by way of a separate package,
brought in via Composer) that makes it easy to set up a full-featured OAuth 2.0 server
in your application, complete with an API and UI components for managing clients
and tokens. Passport and the features it relies on are only compatible with Laravel 5.3
and above.

A Brief Introduction to OAuth 2.0

OAuth is by far the most common auth system used in RESTful APIs. Unfortunately,
it’s far too complex a topic for us to cover here in depth. For further reading, Matt
Frost has written a great book on OAuth and PHP titled Integrating Web Services with
OAuth and PHP (php[architect]).

If youre working with Laravel 5.1 or 5.2, there’s a Laravel package called OAuth 2.0
Server for Laravel that makes it relatively easy to add a basic OAuth 2.0 authentica-
tion server to your Laravel application. It’s a Laravel convenience bridge to a PHP
package called PHP OAuth 2.0 Server.

However, if youre on Laravel 5.3, Passport gives you everything provided by that
package and much more, with a simpler and more powerful API and interface.

Installing Passport

Passport is a separate package, so your first step is to install it. I'll sum up the steps
here, but you can get more in-depth installation instructions in the docs.

First, bring it in with Composer:
composer require laravel/passport

Next, add Laravel\Passport\PassportServiceProvider::class to the providers
array of config/app.php. This will make Passport boot up every time your app loads.

API Authentication with Laravel Passport | 297

http://bit.ly/2e2lFYi
http://bit.ly/2e2lFYi
http://bit.ly/2f1dUyP
http://bit.ly/2fEBjtk

Passport imports a series of migrations, so run those with php artisan migrate to
create the tables necessary for OAuth clients, scopes, and tokens.

Next, run the installer with php artisan passport:install. This is going to create
encryption keys for the OAuth server (storage/oauth-private.key and storage/oauth-
public.key) and insert OAuth clients into the database for our personal and password
grant type tokens (which we'll cover later).

You'll need to import the Laravel\Passport\HasApiTokens trait into your User
model; this will add OAuth client- and token-related relationships to each User, as
well as a few token-related helper methods. Next, add a call to Laravel\Passport
\Passport::routes() in the boot() method of the AuthServiceProvider. This will
add the following routes:

e oauth/authorize

e oauth/clients

e oauth/clients/{client_id}

e oauth/personal-access-tokens

e oauth/personal-access-tokens/{token_1id}

e oauth/scopes

« oauth/token

« oauth/token/refresh

¢ oauth/tokens

oauth/tokens/{token_1id}

Finally, look for the api guard in config/auth.php. By default this guard will use the
token driver (which we'll cover shortly), but we'll change that to be the passport
driver instead.

You now have a fully functional OAuth 2.0 server! You can create new clients with
php artisan passport:client, and you have an API for managing your clients and
tokens available under the /oauth route prefix.

To protect a route behind your Passport auth system, add the auth:api middleware
to the route or route group, as shown in Example 13-17.

Example 13-17. Protecting an API route with the Passport auth middleware

// routes/api.php

Route::get('/user', function (Request S$request) {
return $request->user();

})->middleware('auth:api');

298 | Chapter 13: Writing APIs

In order to authenticate to these protected routes, your client apps will need to pass a
token (well cover how to get one next) as a Bearer token in the Authorization
header. Example 13-18 shows what this would look like if you were making a request
using the Guzzle HTTP library.

Example 13-18. Making a sample API request with a Bearer token

Shttp = new GuzzleHttp\Client;
$response = Shttp->request('GET', 'http://speakr.dev/api/user', [
'headers' => [
'"Accept' => 'application/json',
'Authorization' => 'Bearer ' . $accessToken,
1,
D;

Now, let’s learn a little more about how it all works.

Passport’s API

Passport exposes an API in your application under the /oauth route prefix. The API
provides two primary functions: first, to authorize users with OAuth 2.0 authoriza-
tion flows (/oauth/authorize and /oauth/token), and second, to allow users to
manage their clients and tokens (the rest of the routes).

This is an important distinction, especially if youre unfamiliar with OAuth. Every
OAuth server needs to expose the ability for consumers to authenticate with your
server; that’s the entire point of the service. But Passport also exposes an API for
managing the state of your OAuth server’s clients and tokens. This means you can
easily build a frontend to let your users manage their information in your OAuth
application, and Passport actually comes with Vue-based manager components that
you can either use or use for inspiration.

We'll cover the API routes that allow you to manage clients and tokens, and the Vue
components that Passport ships with to make it easy, but first let’s dig into the various
ways your users can authenticate with your Passport-protected API.

Passport’s Available Grant Types

Passport makes it possible for you to authenticate users in four different ways. Two
are traditional OAuth 2.0 grants (the password grant and authorization code grant)
and two are convenience methods that are unique to Passport (the personal token
and synchronizer token).

API Authentication with Laravel Passport | 299

Password grant

The password grant, while less common than the authorization code grant, is much
simpler. If you want users to be able to authenticate directly with your API using their
username and password—for example, if you have a mobile app for your company
consuming your own API—you can use the password grant.

Creating a password grant client

In order to use the password grant flow, you need a password grant
client in your database. One will have been added when you ran
php artisan passport:install, butif you ever need to generate a
new password grant client for any reason, you can:

php artisan passport:client --password

What should we name the password grant client?
[My Application Password Grant Client]:
> SpaceBook_internal

Password grant client created successfully.

With the password grant type, there is just one step to getting a token: sending the
user’s credentials to the /oauth/token route, like in Example 13-19.

Example 13-19. Making a request with the password grant type

// Assuming SpaceBook is not an external app, but actually
// a trusted internal app... this is SpaceBook's routes/web.php
Route: :get('speakr/password-grant-auth', function () {

Shttp = new GuzzleHttp\Client;

$response = $Shttp->post('http://speakr.dev/oauth/token', [
'form_params' => [
'grant_type' => 'password',
'client_id' => config('speakr.id'),
'client_secret' => config('speakr.secret'),
'username' => 'matt@mattstauffer.co',
'password' => 'my-speakr-password',
1,
s

$thisUsersTokens = json_decode((string) $response->getBody(), true);
// do stuff with the tokens
H;

This route will return an access_token and a refresh_token. You can now save
those tokens to use to authenticate with the API (access token) and to request more
tokens later (refresh token).

300 | Chapter 13: Writing APIs

Note that the ID and secret wed use for the password grant type would be those in
the clients database table of our Passport app in the row with the name Space
Book_1internal.

Authorization code grant

The most common OAuth 2.0 auth workflow is also the most complex one Passport
supports. Let’s imagine were developing an application that’s like Twitter but for
sound clips; we'll call it Speakr. And we'll imagine another website, a social network
for science fiction fans, called SpaceBook. SpaceBook’s developer wants to let people
embed their Speakr data into their SpaceBook newsfeeds. We're going to install Pass-
port in our app so that other apps—SpaceBook, for example—can allow their mutual
users to authenticate with their Speakr information.

In the authorization code grant type, each consuming website—SpaceBook, in this
example—needs to create a “client” in our Passport-enabled app. In most scenarios,
the other sites’ admins will have user accounts at Speakr, and we'll build tools for
them to create clients there. But for starters, we can just manually create a client for
the SpaceBook admins:

php artisan passport:client
Which user ID should the client be assigned to?:
>10

What should we name the client?:
> SpaceBook

Where should we redirect the request after authorization?
[http://passport.dev/auth/callback]:
> http://spacebook.dev/auth/callback

New client created successfully.
Client ID: 3
Client secret: RiQstsWDqd95qQY31QhiZF50ulKdw4iPhPAdke03

© Every client needs to be assigned to a user in your app. Imagine Jill, user #1, is
writing SpaceBook; she’ll be the “owner” of this client we're creating.

Now we have the ID and secret for the SpaceBook client. At this point, SpaceBook
can use this ID and secret to build tooling allowing an individual SpaceBook user
(who is also a Speakr user) to get an auth token from Speakr for use when SpaceBook
wants to make API calls to Speakr on that user’s behalf. Example 13-20 illustrates this.
(This and the following examples assume SpaceBook is a Laravel app, too; they also
assume we've created a file at config/speakr.php that returns the ID and secret we
just created.)

API Authentication with Laravel Passport | 301

Example 13-20. A consumer app redirecting a user to our OAuth server

// In SpaceBook's routes/web.php:
Route: :get('speakr/redirect', function () {
$Squery = http_build_query([
'client_id' => config('speakr.id'),
'redirect_uri' => url('speakr/callback'),
'response_type' => 'code',

D;

// Builds a string like:
// client_id={Sclient_id}&redirect_uri={Sredirect_uri}&response_type=code

return redirect('http://speakr.dev/oauth/authorize?' . Squery);
H;

When users hit that route in SpaceBook, they’ll now be redirected to the /oauth/
authorize Passport route on our Speakr app. At this point they’ll see a confirmation
page; you can use the default Passport confirmation page by running this command:

php artisan vendor:publish --tag=passport-views

This will publish the view to resources/views/vendor/passport/authorize.blade.php, and
your users will see the page shown in Figure 13-1.

Authorization Request

SpaceBook is requesting permission to access your account.

Figure 13-1. OAuth authorization code approval page

Once a user chooses to accept or reject the authorization, Passport will redirect that
user back to the provided redirect_uri. In Example 13-20 we set a redirect_uri of
url('speakr/callback'), so the user will be redirected back to http://spacebook.dev/
speakr/callback.

302 | Chapter 13: Writing APIs

An approval request will contain a code that our consumer app’s callback route can
now use to get a token back from our Passport-enabled app, Speakr. A rejection
request will contain an error. SpaceBook’s callback route might look something like
Example 13-21.

Example 13-21. The authorization callback route in our sample consuming app

// In SpaceBook's routes/web.php:
Route: :get('speakr/callback', function (Request Srequest) {

if (Srequest->has('error')) {

// handle error condition

}

Shttp = new GuzzleHttp\Client;

Sresponse = Shttp->post('http://speakr.dev/oauth/token', [
'form_params' => [
'grant_type' => 'authorization_code',
'client_id' => config('speakr.id'),
'client_secret' => config('speakr.secret'),
'redirect_uri' => url('speakr/callback'),
'code' => $request->code,
1,
1D

S$thisUsersTokens = json_decode((string) $response->getBody(), true);
// do stuff with the tokens
s

What we're doing here is building a Guzzle HTTP request to the /oauth/token Pass-
port route on Speakr. We send a POST request containing the authorization code we
received when the user approved access, and Speakr will return a JSON response con-
taining a few keys:

o access_token is the token SpaceBook will want to save for this user. This token
is what the user will use to authenticate in future requests to Speakr.

o refresh_token is a token SpaceBook will need if you decide to set your tokens to
expire. By default, Passport’s access tokens never need to be refreshed, so you
don’t need to concern yourself with this and can just ignore it.

o expires_in is the number of seconds until an access_token expires (needs to
be refreshed).

API Authentication with Laravel Passport | 303

Using Refresh Tokens

If youd like to force users to reauthenticate more often, you need to set a shorter
refresh time on the tokens, and then you can use the refresh_token to request a new
access_token.

To set a shorter refresh time:

// AuthServiceProvider's boot() method
public function boot()
{

Sthis->registerPolicies();
Passport::routes();

// How long a token lasts before needing refreshing
Passport::tokensExpireIn(

Carbon: :now()->addDays(15)
)

// How long a refresh token will last before re-auth
Passport::refreshTokensExpireIn(
Carbon: :now()->addDays(30)
);
}

To request a new token using a refresh token, you need to have first saved the
refresh_token from the initial auth response in Example 13-21. Once it’s time to
refresh, you'll make a call similar to that example, but modified slightly:

// In SpaceBook's routes/web.php:
Route: :get(
'speakr/request-refresh',
function (Request Srequest) {
Shttp = new GuzzleHttp\Client;

Sparams = [
'grant_type' => 'refresh_token',
'client_id' => config('speakr.id'),
'client_secret' => config('speakr.secret'),
'redirect_uri' => url('speakr/callback'),
'refresh_token' => $theTokenYouSavedEarlier,

1;

$response = Shttp->post(
'"http://speakr.dev/oauth/token',
['form_params' => $params,]

);

S$thisUsersTokens = json_decode(
(string) Sresponse->getBody(),

304 | Chapter 13: Writing APIs

true

);
// do stuff with the tokens

);

In the response, you'll receive a fresh set of tokens to save to your user.

You now have all the tools you need to perform basic authorization code flows. We'll
cover how to build an admin panel for your clients and tokens later, but first, let’s take
a quick look at the other grant types.

Personal access tokens

The authorization code grant is great for your users apps and the password code
grant is great for your own apps, but what if your users want to create tokens for
themselves to test out your API or to use when theyre developing their apps? That’s
what personal tokens are for.

Creating a personal access client

In order to create personal tokens, you need a personal access cli-
ent in your database. Running php artisan passport:install
will have added one already, but if you ever need to generate a new
personal access client for any reason, you can run php artisan
passport:client --personal:

php artisan passport:client --personal

What should we name the password grant client?
[My Application Personal Access Client]:
> My Application Personal Access Client

Personal access client created successfully.

Personal access tokens are not quite a “grant” type; there’s no OAuth-prescribed flow
here. Rather, theyre a convenience method that Passport adds to make it easy to have
a single client registered in your system that exists solely for the easy creation of con-
venience tokens for your users who are developers.

For example, maybe you have a user whos developing a competitor to SpaceBook
named RaceBook (it’s for marathon runners), and he wants to toy around with the
Speakr API a bit to figure out how it works before starting to code. Does this devel-
oper have the facility to create tokens using the authorization code flow? Not yet—he
hasn’t even written any code yet! That’s what personal access tokens are for.

API Authentication with Laravel Passport | 305

You can create personal access tokens through the JSON API, which I'll cover shortly,
but you can also create one for your user directly in code:

// Creating a token without scopes
Stoken = Suser->createToken('Token Name')->accessToken;

// Creating a token with scopes...
Stoken = Suser->createToken('My Token', ['place-orders'])->accessToken;

Your users can use these tokens just as if they were tokens created with the authoriza-
tion code grant flow.

Tokens from Laravel session authentication (synchronizer tokens)

There’s one final way for your users to get tokens to access your API, and it’s another
convenience method that Passport adds but which normal OAuth servers don’t
provide. This method is for when your users are already authenticated because
they’ve logged in to your Laravel app like normal, and you want the JavaScript on
your Laravel app to be able to access the API. Itd be a pain to have to reauthenticate
the users with the authorization code or password grant flow, so Laravel provides a
helper for that.

If you add the Laravel\Passport\Http\Middleware\CreateFreshApiToken middle-
ware to your web middleware group (in app/Http/Kernel.php), every response Laravel
sends to your authenticated users will have a cookie named laravel_token attached
to it. This cookie is a JSON Web Token (JWT) that contains encoded information
about the CSRF token. Now, if you send the normal CSRF token with your JavaScript
and send it along in the X-CSRF-TOKEN header on any API requests you make, the API
will compare your CSRF token with this cookie and this will authenticate your users
to the API just like any other token.

JSON Web Tokens (JWT)

JWT is a newer format that is just beginning to gain prominence. A JSON Web Token
is a JSON object containing all of the information necessary to determine a user’s
authentication state and access permissions. This JSON object is digitally signed using
a keyed-hash message authentication code (HMAC) or RSA, which is what makes
it trustworthy.

The token is usually encoded and then delivered via URL, POST request, or in a
header. Once a user authenticates with the system somehow, every HTTP request
after that will contain the token, describing the user’s identity and authorization.

JSON Web Tokens consist of three Base64-encoded strings separated by dots (.);
something like xxx.yyy.zzz. The first section is a Base64-encoded JSON object con-
taining information about which hashing algorithm is being used; the second section
is a series of “claims” about the user’s authorization and identity; and the third is the

306 | Chapter 13: Writing APIs

signature, or the first and second sections encrypted and signed using the algorithm
specified in the first section.

To learn more about JWT, check out JWT.io or the jwt-auth Laravel package.

The default Vue setup that Laravel comes bundled with sets up this header for you,
but if youre using a different framework, youll need to set it up manually.
Example 13-22 shows how to do it with jQuery.

Example 13-22. Setting jQuery to pass Laravel’s CSRF tokens with all Ajax requests

$.ajaxSetup({
headers: {
'X-CSRF-TOKEN': "{{ csrf_token() }}"

}
s

If you add the CreateFreshApiTokens middleware to your web middleware group
and pass that header with every JavaScript request, your JavaScript requests will be
able to hit your Passport-protected API routes without worrying about any of the
complexity of the authorization code or password grants.

Managing Clients and Tokens with the Passport APl and the
Vue Components

Now that we've covered how to manually create clients and tokens and how to
authorize as a consumer, let’s take a look at the aspects of the Passport API that make
it possible to build user interface elements allowing your users to manage their clients
and tokens.

The routes

The easiest way to dig into the API routes is by looking at how the sample provided
Vue components work and which routes they rely on, so I'll just give a brief overview:

/oauth/clients (GET, POST)
/oauth/clients/{id} (DELETE, PUT)
/oauth/personal-access-tokens (GET, POST)
/oauth/personal-access-tokens/{id} (DELETE)
/oauth/scopes (GET)

/oauth/tokens (GET)

/oauth/tokens/{1d} (DELETE)

As you can see, we have a few entities here (clients, personal access tokens, scopes,
and tokens). We can list all of them; we can create some (you can’t create scopes, since
they’re defined in code, and you can’t create tokens, because theyre created in the
authorization flow); and we can delete and update some.

API Authentication with Laravel Passport | 307

https://jwt.io/
https://github.com/tymondesigns/jwt-auth

The Vue components

Passport comes with a set of Vue components out of the box that make it easy to
allow your users to administer their clients (those theyve created), authorized clients
(those they’ve allowed access to their account), and personal access tokens (for their
own testing purposes).

To publish these components into your application, run this command:
php artisan vendor:publish --tag=passport-components

You'll now have three new Vue components in resources/assets/js/components/pass-
port. To add them to your Vue bootstrap so theyre accessible in your templates, regis-
ter them in your resources/assets/js/app.js file as shown in Example 13-23.

Example 13-23. Importing Passport’s Vue components into app.js
require('./bootstrap');

Vue. component(
'passport-clients’,
require('./components/passport/Clients.vue')

)s

Vue.component(
'passport-authorized-clients’,
require('./components/passport/AuthorizedClients.vue')

);

Vue. component(
'passport-personal-access-tokens',
require('./components/passport/PersonalAccessTokens.vue')

)s

const app = new Vue({
el: 'body'
s

You now get three components that you can use anywhere in your application:

<passport-clients></passport-clients>
<passport-authorized-clients></passport-authorized-clients>
<passport-personal-access-tokens></passport-personal-access-tokens>

<passport-clients> shows your users all of the clients they’ve created. This means
SpaceBook’s creator will see the SpaceBook client listed here when she logs in
to Speakr.

<passport-authorized-clients> shows your users all of the clients they’ve author-
ized to have access to their accounts. This means any users of both SpaceBook and

308 | Chapter 13: Writing APIs

Speakr who have given SpaceBook access to their Speakr account will see SpaceBook
listed here.

<passport-personal-access-tokens> shows your users any personal access tokens
they’ve created here. This means the creator of RaceBook, the SpaceBook competitor,
will see his personal access token here that he’s been using to test out the Speakr API.

If you are on a fresh install of Laravel and want to test these out, there are a few steps
to take to get it working:

« Follow the instructions given earlier in this chapter to get Passport installed.
« In your terminal, run the following commands:

— php artisan vendor:publish --tag=passport-components

— npm install

—gulp

— php artisan make:auth

» Open resources/views/home.blade.php and add the Vue component references
(e.g., <passport-clients>) just below the <div class="panel">.

If youd like, you can just use those components as they are. But you can also use
them as reference points to understand how to use the API and create your own
frontend components in whatever format youd like.

Passport Scopes

If youre familiar with OAuth, you probably noticed we haven't talked about scopes.
Everything we've covered so far can be customized by scope, but first let’s quickly
cover what scopes are.

In OAuth, scopes are defined sets of privileges that are something other than “can do
everything” If you've ever gotten a GitHub API token before, for example, you
might've noticed that some apps want access just to your name and email address,
some want access to all of your repos, and some want access to your gists. Each of
these is a “scope,” which allows both the user and the consumer app to define what
access the consumer app needs to perform its job.

As shown in Example 13-24, you can define the scopes for your application in the
boot() method of your AuthServiceProvider.
Example 13-24. Defining Passport scopes

// AuthServiceProvider
use Laravel\Passport\Passport;

API Authentication with Laravel Passport | 309

public function boot()

{
Passport: :tokensCan([
"list-clips' => 'List sound clips',
'add-delete-clips' => 'Add new and delete old sound clips',
'admin-account' => 'Administer account details',
s
}

Once you have your scopes defined, the consumer app can define which scopes it’s
asking for access to. Just add a space-separated list of tokens in the “token” field to the
initial redirect, in the scope field, as shown in Example 13-25.

Example 13-25. Requesting authorization to access specific scopes

// In SpaceBook's routes/web.php:
Route: :get('speakr/redirect', function () {
Squery = http_build_query([
'client_id' => config('speakr.id'),
'redirect_uri' => url('speakr/callback'),
'response_type' => 'code',
'scope' => 'list-clips add-delete-clips'

D;

return redirect('http://speakr.dev/oauth/authorize?' . Squery);
b

When the user tries to authorize with this app, it'll present the list of requested
scopes. This way, the user will see the difference between “SpaceBook is requesting to
see your email address” and “SpaceBook is requesting access to post as you and delete
your posts and message your friends.”

You can check for scope using middleware or on the User instance.

Example 13-26 shows how to check on the User.

Example 13-26. Checking whether the token a user authenticated with can perform a
given action

Route::get('/events', function () {
if (auth()->user()->tokenCan('add-delete-clips')) {
//
}
s

There are two middleware you can use for this too, scope and scopes. To use these in
your app, add them to $routeMiddleware in your app/Http/Kernel.php file:

310 | Chapter 13: Writing APIs

'scopes' => \Laravel\Passport\Http\Middleware\CheckScopes::class,
'scope' => \Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

You can now use the middleware as illustrated in Example 13-27. scopes requires all

of the defined scopes to be on the user’s token in order for the user to access the
route, while scope requires at least one of the defined scopes to be on the user’s token.

Example 13-27. Using middleware to restrict access based on token scopes

// routes/api.php
Route::get('clips', function () {

// Access token has both the "list-clips" and "add-delete-clips" scopes
})->middleware('scopes:list-clips,add-delete-clips');

// or

Route::get('clips', function () {
// Access token has at least one of the listed scopes
})->middleware('scope:list-clips,add-delete-clips')

If you haven't defined any scopes, the app will just work as if they don't exist. The
moment you use scopes, however, your consumer apps will have to explicitly define
which scopes they're requesting access with. The one exception to this rule is that if
youre using the password grant type your consumer app can request the * scope,
which gives the token access to everything.

Laravel 5.2+ APl Token Authentication

Laravel 5.2 introduced a simple API token authentication mechanism. It’s not much
different from a username and password: there’s a single token assigned to each user
that clients can pass along with a request to authenticate that request for that user.

This API token mechanism is not nearly as secure as OAuth 2.0, so make sure you
know it’s the right fit for your application before deciding to use it. But if it is, it
couldn’t be much simpler to implement.

First, add a 60-character unique api_token column to your users table:
Stable->string('api_token', 60)->unique();

Next, update whatever method creates your new users and ensure it sets a value for
this field for each new user. Laravel has a helper for generating random strings, so if
you want to use that, just set the field to str_random(60) for each. You'll also need to
do this for preexisting users if you're adding this to a live application.

To wrap any routes with this authentication method, use the auth:api route middle-
ware, as in Example 13-28.

Laravel 5.2+ API Token Authentication | 311

Example 13-28. Applying the API auth middleware to a route group

Route: :group(['prefix' => 'api', 'middleware' => 'auth:api'], function () {
//
Hs

Note that, since youre using an authentication guard other than the standard guard,
you’'ll need to specify that guard any time you use any auth() methods:

Suser = auth()->guard('api')->user();

Testing

Fortunately, testing APIs is actually simpler than testing almost anything else in
Laravel.

We cover this in more depth in Chapter 12, but there are a series of methods for mak-
ing assertions against JSON. Combine that capability with the simplicity of full-stack
application tests and you can put together your API tests quickly and easily. Take a
look at the common API testing pattern in Example 13-29.

Example 13-29. A common API testing pattern

class DogsApiTest extends TestCase

{

use WithoutMiddleware, DatabaseMigrations;

public function test_1it_gets_all_dogs()

{
Sthis->be(factory(User::class)->create());
$dogl = factory(Dog::class)->create();
$dog2 = factory(Dog::class)->create();
Sthis->visit('api/dogs');
$this->seeJson([

'name' => $dogl->name
s
Sthis->seeJson([
'name' => $dog2->name
D;
}
}

Note that were using WithoutMiddleware to avoid worrying about the authentica-
tion. You'll want to test that separately, if at all (for more on authentication, see Chap-
ter 9).

312 | Chapter 13: Writing APIs

We generate a user and authenticate as that user with $this->be(). We then insert
two dogs into the database, and then visit the API route for listing all dogs and make
sure both are present in the output.

You can cover all of your API routes simply and easily here, including modifying
actions like POST and PATCH.

TL;DR

Laravel is geared toward building APIs and makes it simple to work with JSON and
RESTful APIs. There are some conventions, like for pagination, but much of the defi-
nition of exactly how your API will be sorted, or authenticated, or whatever else is up
to you.

Laravel provides tools for authentication and testing, easy manipulation and reading
of headers, and working with JSON, even automatically encoding all Eloquent results
to JSON if they’re returned directly from a route.

Laravel Passport is a separate package that makes it simple to create and manage an
OAuth server in your Laravel apps.

DR | 313

CHAPTER 14
Storage and Retrieval

We covered how to store data in relational databases in Chapter 8, but there’s a lot
more that can be stored, both locally and remotely. In this chapter we'll cover filesys-
tem and in-memory storage, file uploads and manipulation, nonrelational data stores,
sessions, the cache, cookies, and full-text search.

Local and Cloud File Managers

Laravel provides a series of file manipulation tools through the Storage facade, and a
few helper functions.

Laravels filesystem access tools can connect to the local filesystem as well as S3, Rack-
space, and FTP. The S3 and Rackspace file drivers are provided by Flysystem, and it’s
simple to add additional Flysystem providers to your Laravel app—for example,
Dropbox or WebDAV.

Configuring File Access

The definitions for Laravel’s file manager live in config/filesystems.php. Each connec-
tion is called a “disk,” and Example 14-1 lists the disks that are available out of
the box.

Example 14-1. Default available storage disks

'disks' => [
'local' => [
'driver' => 'local',
'root' => storage_path('app'),

315

https://github.com/thephpleague/flysystem

'public' => [
'driver' => 'local',
'root' => storage_path('app/public'),
'visibility' => 'public',

's3' => [
'driver' => 's3',
'key' => 'your-key',
'secret' => 'your-secret',
'region' => 'your-region',
'bucket' => 'your-bucket',

1,

1,

The storage_path() helper

The storage_path() helper used in Example 14-1 links to Laravel’s
configured storage directory, storage/. Anything you pass to it
is added to the end of the directory name, so
storage_path('public') will return the string storage/public.

The local disk connects to your local storage system and presumes it will be interact-
ing with the app directory of the storage path, which is storage/app.

The public disk is also a local disk (although you can change it if youd like), which is
intended for use with any files you intend to be served by your application. It defaults
to the storage/app/public directory, and if you want to use this directory to serve files
to the public, you'll need to add a symbolic link (symlink) to somewhere within the
public/ directory. Thankfully, there’s an Artisan command for that:

Maps public/storage to serve the files from storage/app/public

php artisan storage:link
The s3 disk shows how Laravel connects to cloud-based file storage systems. If you've
ever connected to S3 or any other cloud storage provider, this will be familiar; pass it
your key and secret and some information defining the “folder” you're working with,
which in S3 is the region and the bucket.

Using the Storage Facade

In config/filesystem.php you can set the default disk, which is what will be used any
time you call the Storage facade without specifying a disk. To specify a disk, call
disk('diskname') on the facade:

Storage: :disk('s3')->get('file.jpg');

316 | Chapter 14: Storage and Retrieval

The filesystems each provide the following methods:

get('file.jpg")
Retrieves the file at file. jpg

put('file.jpg', ScontentsOrStream)
Puts the given file contents to file. jpg

putFile('myDir', Sfile)
Puts the contents of a provided file (in the form of an instance of either I1lumi
nate\Http\File or Illuminate\Http\UploadedFile) to the myDir directory,
but with Laravel managing the entire streaming process and naming the file

exists('file.jpg"')
Returns a boolean of whether file. jpg exists

copy('file.jpg', 'newfile.jpg")
Copies file. jpgto newfile. jpg

move('file.jpg', 'newfile.jpg')
Moves file. jpgto newfile. jpg

prepend('my.log', 'log text')
Adds content at the beginning of my. log

append('my.log', 'log text')
Adds content to the end of my. log

delete('file.jpg')
Deletes file. jpg

deleteDirectory('myDir')
Deletes myDir
size('file.jpg')
Returns the size in bytes of file. jpg
lastModified(' file.jpg')
Returns the Unix timestamp of when file. jpg was last modified
files('myDir')
Returns an array of filenames in the directory myDir

allFiles('myDir")
Returns an array of filenames in the directory myDir and all subdirectories

Local and Cloud File Managers | 317

directories('myDir'")
Returns an array of directory names in the directory myDir

allDirectories('myDir'")
Returns an array of directory names in the directory myDir and all subdirectories

Injecting an instance

If youd prefer injecting an instance instead of using the File
facade, typehint or inject Illuminate\Filesystem\Filesystem
and you’ll get all the same methods available to you.

Adding Additional Flysystem Providers

If you want to add an additional Flysystem provider, you'll need to “extend” Laravel’s
native storage system. In a service provider somewhere—it could be the boot()
method of AppServiceProvider, but itd be more appropriate to create a unique ser-
vice provider for each new binding—use the Storage facade to add new storage sys-
tems, as seen in Example 14-2.

Example 14-2. Adding additional Flysytem providers

// Some service provider
public function boot()

{
Storage: :extend('dropbox', function ($app, $config) {
$client = new DropboxClient(
$config['accessToken'], Sconfig['clientIdentifier']
);
return new Filesystem(new DropboxAdapter(Sclient));
b
}

Basic File Uploads and Manipulation

One of the more common usages for the Storage facade is accepting file uploads
from your application’s users. Lets look at a common workflow for that, in
Example 14-3.

Example 14-3. Common user upload workflow

class DogsController

{
public function updatePicture(Request $request, Dog $dog)

318 | Chapter 14: Storage and Retrieval

Storage: :put(
'dogs/' . $dog->id,
file_get_contents($request->file('picture')->getRealPath())
);
}

We put() to a file named dogs/{id}, and we grab our contents from the uploaded file.
Every uploaded file is a descendant of the SplFileInfo class, which provides a
getRealPath() method that returns the path to the file’s location. So, we get the tem-
porary upload path for the user’s uploaded file, read it with file_get_contents(),
and pass it into Storage: : put().

Since we have this file available to us here, we can do anything we want to the file
before we store it—use an image manipulation package to resize it if it’s an image,
validate it and reject it if it doesn’t meet our criteria, or whatever else we like.

If we wanted to upload this same file to S3 and we had our credentials stored
in config/filesystems.php, we could just adjust Example 14-3 to call
Storage::disk('s3')->put(); well now be uploading to S3. Take a look at
Example 14-4 to see a more complex upload example.

Example 14-4. A more complex example of file uploads, using Intervention

class DogsController

{
public function updatePicture(Request $request, Dog S$dog)

{

Soriginal = Srequest->file('picture');

// Resize image to max width 150

$image = Image::make(Soriginal)->resize(150, null, function (Sconstraint) {
Sconstraint->aspectRatio();

})->encode('jpg", 75);

Storage: :put(
'dogs/thumbs/' . $dog->id,
$image->getEncoded()
);
}

I used an image library called Intervention in Example 14-4 just as an example; you
can use any library you want. The important point is that you have the freedom to
manipulate the files however you want before you store them.

Basic File Uploads and Manipulation | 319

http://image.intervention.io/

Using store() and storeAs() on the uploaded file

3] Laravel 5.3 introduced the ability to store an uploaded file using
= the file itself. Learn more in Example 6-11.

Sessions

Session storage is the primary tool we use in web applications to store state between
page requests. Laravel’s session manager supports session drivers using files, cookies,
a database, Memcached or Redis, or in-memory arrays (which expire after the page
request and are only good for tests).

You can configure all of your session settings and drivers in config/session.php. You
can choose whether or not to encrypt your session data, select which driver to use
(file is the default), and specify more connection-specific details like the length of
session storage and which files or database tables to use. Take a look at the session
docs to learn about specific dependencies and settings you need to prepare for
whichever driver you choose to use.

The general API of the session tools allows you to save and retrieve data based on
individual keys: session()->put('user_id') and session()->get('user_id"), for
example. Make sure to avoid saving anything to a flash session key, since Laravel
uses that internally for flash (only available for the next page request) session storage.

Accessing the Session

The most common way to access the session is using the global session() helper. Use
it with no parameters to get a session instance, with a single string parameter to “get”
from the session, or with an array to “put” to the session, as demonstrated in
Example 14-5.

Example 14-5. Using the global session() helper
// get

Svalue = session()->get('key');
Svalue = session('key');

// put

session()->put('key', 'value'); session(['key', 'value']);

But you can also use the session() method on any given Illuminate Request object,
as in Example 14-6.

320 | Chapter 14: Storage and Retrieval

https://laravel.com/docs/master/session
https://laravel.com/docs/master/session

Example 14-6. Using the session() method on a Request object

Route: :get('dashboard', function (Request S$request) {
$request->session()->get('user_id');

s

Or you can inject an instance of I1luminate\Session\Store, as in Example 14-7.

Example 14-7. Injecting the backing class for sessions
Route::get('dashboard', function (Illuminate\Session\Store $session) {
return $session->get('user_id');

s

Finally, you can use the Session() facade:

Session::get('user_1id');

If youre new to Laravel and not sure which to use, I'd recommend using the global

helper.

The Methods Available on Session Instances

The two most common methods are get() and put(), but let’s take a look at each of

the available methods and their parameters:

session()->get(Skey, SfallbackValue)

get() pulls the value of the provided key out of the session. If there is no value
attached to that key, it will return the fallback value instead (and if you don’t pro-
vide a fallback, it will return null). The fallback value can be a string or a closure,
as you can see in the following examples.

S$points = session()->get('points');
$points = session()->get('points', 0);
$points = session()->get('points', function () {

return (new PointGetterService)->getPoints();

s

session()->put(Skey, Svalue)

put() stores the provided value in the session at the provided key:

session()->put('points', 45);

Spoints = session()->get('points');

Sessions | 321

session()->push(Skey, Svalue)
If any of your session values are arrays, you can use push() to add a value onto
the array:

session()->put('friends', ['Sadl', 'Quang', 'Mechteld']);
session()->push('friends', 'Javier');

session()->has(Skey)
has() checks whether there’s a value set at the provided key:

if (session()->has('points')) {
// do something
}

You can also pass an array of keys, and it only returns true if all of the keys exist.

session()->has() and null values

Y If a session value is set, but the value is null, session()-
\ >has() will return false.

session()->all()
all() returns an array of everything that’s in the session, including those values
set by the framework. Youll likely see values under keys like _token (CSRF
tokens), _previous (previous page, for back() redirects), and flash (for flash
storage).

session()->forget(Skey) and session()->flush()
forget() removes a previously set session value. flush() removes every session
value, even those set by the framework:

session()->put('a', 'awesome');
session()->put('b', 'bodacious');

session()->forget('a');

// a is no longer set, b is still set
session()->flush();

// session is now empty

session()->pull(Skey, SfallbackValue)
pull() is the same as get(), except that it deletes the value from the session after
pulling it.

session()->regenerate()
It's not common, but if you need to regenerate your session ID, regenerate() is
there for you.

322 | Chapter 14: Storage and Retrieval

Flash Session Storage

There are three more methods we haven't covered yet, and they all have to do with
something called “flash” session storage.

One very common pattern for session storage is to set a value that you only want
available for the next page load. For example, you might want to store a message like
“Updated post successfully” You could manually get that message and then wipe it on
the next page load, but if you use this pattern a lot it can get wasteful. Enter flash ses-
sion storage: keys that are expected to only last for a single page request.

Laravel handles the work for you, and all you need to do is use flash() instead of
put(). The useful methods here are:

session()->flash(skey, Svalue)
flash() sets the session key to the provided value for just the next page request.

session()->reflash() and session()->keep(Skey)
If you need the previous page’s flash() session data to stick around for one more
request, you can use reflash() to restore the entire flash contents for the next
request or keep(Skey) to just restore a single flash value for the next request.
keep() can also accept an array of keys to reflash.

Cache

Caches are structured very similarly to sessions. You provide a key and Laravel stores
it for you. The biggest difference is that the data in a cache is cached per application
and the data in a session is cached per user. That means caches are more commonly
used for storing large database results, API calls, or other slow queries that can stand
to get a little bit “stale”

The cache configuration settings are available at config/cache.php. Just like with a ses-
sion, you can set the specific configuration details for any of your drivers, and also
choose which will be your default. Laravel uses the file cache driver by default, but
you can also use Memcached or Redis, APC, or a database, or write your own cache
driver. Take a look at the cache docs to learn about specific dependencies and settings
you need to prepare for whichever driver you choose to use.

Accessing the Cache

Just like with sessions, there are a few different ways to access a cache. You can use
the facade:

Susers = Cache::get('users');

You can get an instance from the container, as in Example 14-8.

Cache | 323

https://laravel.com/docs/master/cache

Example 14-8. Injecting an instance of the cache

Route::get('users', function (Illuminate\Contracts\Cache\Repository $cache) {
return $cache->get('users');

s

Or you can use the global cache() helper (introduced in Laravel 5.3), as in
Example 14-9.

Example 14-9. Using the global cache() helper

// get from cache

Susers = cache('key', 'default value');

Susers = cache()->get('key', 'default value');
// put for S$minutes duration

Susers = cache(['key' => 'value'], $minutes);
Susers = cache()->put('key', 'value', $minutes);

If youre new to Laravel and not sure which to use, I'd recommend using the global
helper.

The Methods Available on Cache Instances

Let’s take a look at the methods you can call on a Cache instance:

cache()->get(Skey, SfallbackValue) and

cache()->pull(s$key, SfallbackValue)
get() makes it easy to retrieve the value for any given key. pull() is the same as
get() except it removes the cached value after retrieving it.

cache()->put(skey, Svalue, SminutesOrExpiration)
put() sets the value of the specified key for a given number of minutes. If youd
prefer setting an expiration date/time instead of a number of minutes, you can
pass a Carbon object as the third parameter:

cache()->put('key', 'value', Carbon::now()->addDay());

cache()->add(skey, Svalue)
add() is similar to put(), except if the value already exists, it won’t set it. Also,
the method returns a boolean of whether or not the value was actually added:

$someDate = Carbon::now();

cache()->add('someDate', $someDate); // returns true
$someOtherDate = Carbon::now()->addHour();
cache()->add('someDate', $someOtherDate); // returns false

324 | Chapter 14: Storage and Retrieval

cache()->forever(sSkey, Svalue)
forever() saves a value to the cache for a specific key; it’s the same as put(),
except the values will never expire (until they’re removed with forget()).

cache()->has(Skey)
has() returns a boolean of whether or not there’s a value at the provided key.

cache()->remember ($Skey, Sminutes, S$closure) and
cache()->rememberForever(Skey, Sclosure)
remember () provides a single method to handle a very common flow: look up
whether a value exists in the cache for a certain key, and if it doesnt, get that
value somehow, save it to the cache, and return it.

remember () lets you provide a key to look up, the number of minutes it should be
saved for, and a closure to define how to look it up, in case the key has no value
set. rememberForever() is the same, except it doesn’t need you to set the number
of minutes it should expire after. Take a look at the following example to see a
common user scenario for remember():

// Either returns the value cached at "users" or gets "User::all()",
// caches it at "users", and returns it
Susers = cache()->remember('users', 120, function () {

return User::all();

i9H

cache()->increment(Skey, Samount) and cache()->decrement(Skey, Samount)
increment() and decrement() allow you to increment and decrement integer
values in the cache. If there is no value at the given key, it'll be treated as if it were
0, and if you pass a second parameter to increment or decrement, it'll increment
or decrement by that amount instead of by 1.

cache()->forget(Skey) and cache()->flush()
forget() works just like Session’s forget() method: pass it a key and it'll wipe
that key’s value. flush() wipes the entire cache.

Cookies

You might expect cookies to work the same as the session and the cache. A facade and
a global helper are available for these too, and our mental models of all three are simi-
lar: you can get or set their values in the same way.

But because cookies are inherently attached to the requests and responses, you'll
need to interact with cookies differently. Let’s look really briefly at what makes cook-
ies different.

Cookies | 325

Cookies in Laravel

Cookies can exist in three places in Laravel. They can come in via the request, which
means the user had the cookie when she visited the page. You can read that with the
Cookie facade, or you can read it off of the request object.

They can also be sent out with a response, which means the response will instruct the
user’s browser to save the cookie for future visits. You can do this by adding the
cookie to your response object before returning it.

And lastly, a cookie can be queued. If you use the Cookie facade to set a cookie, you
have put it into a “CookieJar” queue, and it will be removed and added to the
response object by the AddQueuedCookiesToResponse middleware.

Accessing the Cookie Tools

You can get and set cookies in three places: the Cookie facade, the cookie() global
helper, and the request and response objects.

The Cookie facade

The Cooktie facade is the most full-featured option, allowing you to not only read and
make cookies, but also to queue them to be added to the response. It provides the
following methods:

Cookie::get(Skey)
To pull the value of a cookie that came in with the request, you can just run
Cookie::get('cookie-name"). This is the simplest option.

Cookie: :has(Skey)
You can check whether a cookie came in with the request using
Cookie::has('cookie-name'), which returns a boolean.

Cookie: :make(...params)
If you want to make a cookie without queueing it anywhere, you can use
Cookie: :make(). The most likely use for this would be to make a cookie and
then manually attach it to the response object, which we’ll cover in a bit.

Here are the parameters for make(), in order:
+ $name is the name of the cookie
o $value is the content of the cookie
« $minutes specifies how many minutes the cookie should live
« $path is the path under which your cookie should be valid

o $domatin lists the domains for which your cookie should work

326 | (Chapter 14: Storage and Retrieval

« $secure indicates whether the cookie should only be transmitted over a
secure (HTTPS) connection

o ShttpOnly indicates whether the cookie will be made accessible only through
the HT'TP protocol

Cookie: :make()
Returns an instance of Symfony\Component\HttpFoundation\Cookie.

Default settings for cookies

The CookieJar that the Cookie facade instance uses reads its
defaults from the session config. So, if you change any of the
configuration values for the session cookie in config/
session.php, those same defaults will be applied to all of your
cookies that you create using the Cookie facade.

Cookie::queue(Cookie [/ ...params)
If you use Cookie: :make(), you'll still need to attach the cookie to your response,
which well cover shortly. Cookie::queue() has the same syntax as
Cookie: :make(), but it enqueues the created cookie to be automatically attached
to the response by middleware.

If youd like, you can also just pass a cookie you've created yourself into
Cookie: :queue().

Here’s the simplest possible way to add a cookie to the response in Laravel:

Cookie: :queue('dismissed-popup', true, 15);

When your queued cookies won't get set

Cookies can only be returned as a part of a response. So, if you
enqueue cookies with the Cookie facade and then your

" response isn’t returned correctly—for example, if you use
PHP’s exit() or something halts the execution of your script
—your cookies won't be set.

The cookie() global helper

The cookie() global helper will return a CookieJar instance if you call it with no
parameters. However, two of the most convenient methods on the Cookie facade—
has() and get()—exist only on the facade, not on the CookieJar. So, in this context,
I think the global helper is actually less useful than the other options.

Cookies | 327

The one task for which the cookie() global helper is useful is creating a cookie. If you
pass parameters to cookie(), theyll be passed directly to the equivalent of
Cookie: :make(), so this is the fastest way to create a cookie:

$cookie = cookie('dismissed-popup', true, 15);

Injecting an instance

You can also inject an instance of I1luminate\Cookie\CookieJar
anywhere in the app, but you'll have the same limitations discussed
here.

Cookies on request and response objects

Since cookies come in as a part of the request and are set as a part of the response,
those Illuminate objects are the places they actually live. The Cookie facade’s get(),
has(), and queue() methods are just proxies to interact with the request and
response objects.

So, the simplest way to interact with cookies is to pull cookies from the request and
set them on the response.

Reading cookies from request objects. Once you have a copy of your request object—if
you don’t know how to get one, just try app('request')—you can use the request
object’s cookie() method to read its cookies, as shown in Example 14-10.

Example 14-10. Reading a cookie from a request object

Route: :get('dashboard', function (Illuminate\Http\Request $request) {
SuserDismissedPopup = $request->cookie('dismissed-popup', false);

s

As you can see in this example, the cookie() method has two parameters: the cook-
ie’s name and, optionally, the fallback value.

Setting cookies on response objects. Whenever you have your response object ready,
you can use the cookie() method (or the withCookie() method in Laravel prior to
5.3) on it to add a cookie to the response, like in Example 14-11.

Example 14-11. Setting a cookie on a response object

Route: :get('dashboard', function () {
Scookie = cookie('saw-dashboard', true);

return Response::view('dashboard")
->cookie(Scookie);

s

328 | Chapter 14: Storage and Retrieval

If youre new to Laravel and not sure which option to use, I'd recommend setting
cookies on the request and response objects. It's a bit more work, but will lead to
fewer surprises if future developers don’t understand the CookieJar queue.

Full-Text Search with Laravel Scout

Laravel Scout is a separate package that you can bring into your Laravel apps to add
full-text search to your Eloquent models. Scout makes it easy to index and search the
contents of your Eloquent models; it ships with Algolia and Elasticsearch drivers,
but there are also community packages for other providers. I'll assume you're using
Algolia.

Installing Scout
First, pull in the package in any Laravel 5.3+ app:
composer require laravel/scout

Next, add Laravel\Scout\ScoutServiceProvider::class, to the providers section
of config/app.php.

You'll want to set up your Scout configuration. Run php artisan vendor:publish
and paste your Algolia credentials in config/scout.php.

Finally, install the Algolia SDK:

composer require algolia/algoliasearch-client-php

Marking Your Model for Indexing

In your model (we’ll use Review, for a book review, for this example), import the
Laravel\Scout\Searchable trait.

You can define which properties are searchable using the toSearchableArray()
method (it defaults to mirroring toArray()), and define the name of the models
index using the searchableAs() method (it defaults to the table name).

Scout subscribes to the create/delete/update events on your marked models. When
you create, update, or delete any rows, Scout will sync those changes up to Algolia.
It'1l either make those changes synchronously with your updates or, if you configure
Scout to use a queue, queue the updates.

Searching Your Index
Scout’s syntax is simple. For example, to find any Review with the word Llew in it:

Review::search('Llew')->get();

Full-Text Search with Laravel Scout | 329

You can also modify your queries as you would with regular Eloquent calls:

// Get all records from the Review that match the term "Llew",
// limited to 20 per page and reading the page query parameter,
// just like Eloquent pagination

Review: :search('Llew')->paginate(20);

// Get all records from the Review that match the term "Llew"

// and have the account_id field set to 2

Review::search('Llew')->where('account_1id', 2)->get();
What comes back from these searches? A collection of Eloquent models, rehydrated
from your database. The IDs are stored in Algolia, which returns a list of matched
IDs; Scout then pulls the database records for those and returns them as Eloquent
objects.

You don’t have full access to the complexity of SQL WHERE commands, but it provides
a basic framework for comparison checks like you can see in the code samples here.

Queues and Scout

At this point your app will be making HTTP requests to Algolia on every request that
modifies any database records. This can slow down your application quickly, which is
why Scout makes it easy to push all of its actions onto a queue.

In config/scout.php, set queue to true so that these updates are set to be indexed asyn-
chronously. Your full-text index is now operating under “eventual consistency”; your
database records will receive the updates immediately, and the updates to your search
indexes will be queued and updated as fast as your queue worker allows.

Perform Operations Without Indexing

If you need to perform a set of operations and avoid triggering the indexing
in response, wrap the operations in the withoutSyncingToSearch() method on your
model:

Review: :withoutSyncingToSearch(function () {
// make a bunch of reviews, e.g.
factory(Review::class, 10)->create();

s

Manually Trigger Indexing via Code

If you want to manually trigger indexing your model, you can do it using code in
your app or via the command line.

To manually trigger indexing from your code, add searchable() to the end of any
Eloquent query and it will index all of the records that were found in that query:

330 | Chapter 14: Storage and Retrieval

Review::all()->searchable();

You can also choose to scope the query to only those you want to index. However,
Scout is smart enough to insert new records and update old records, so you may
choose to just reindex the entire contents of the model’s database table.

You can also run searchable() on relationship methods:

Suser->reviews()->searchable();

If you want to unindex any records with the same sort of query chaining, just use
unsearchable() instead:

Review: :where('sucky', true)->unsearchable();

Manually Trigger Indexing via the CLI
You can also trigger indexing with an Artisan command:
php artisan scout:import App\\Review

This will chunk all of the Review models and index them all.

Testing

Testing most of these features is as simple as just using them in your tests; no need to
mock or stub. The default configuration will already work—for example, take a look
at phpunit.xml to see that your session driver and cache driver have been set to values
appropriate for tests.

However, there are a few convenience methods and a few gotchas that you should
know about before you attempt to test them all.

File Storage

Testing file uploads can be a bit of a pain, but follow these steps and it will be clear.

Uploading fake files

First, let’s look at how to manually create a Symfony UploadedFile object for use in
our application testing (Example 14-12). Note that this assumes we have a storage/
tests directory where we're placing a file named for-tests.jpg that we'll use for our tests.

Example 14-12. Creating a fake UploadedFile for testing

public function test_file_should_be_stored()
{
$path = storage_path('tests/for-tests.jpg');
$file = new UploadedFile(
Spath, // file path

Testing | 331

'for-tests.jpg', // original file name

'image/jpg', // MIME type

filesize($path), // file size; best to get once & hardcode into your test,
null, // error code

true // whether we're in test mode

);
Sthis->call('post', 'upload-route', [], [], ['upload' => $file]);

Sthis->assertResponseOk();

}

We've created a new instance of UploadedFile that refers to our testing file, and we
can now use it to test our routes.

Returning fake files

If your route is expecting a real file to exist, sometimes the best way to make it
testable is to make that real file actually exist. Let’s say every user must have a profile
picture.

First, let’s set up the model factory for the user to use Faker to make a copy of the
picture, as in Example 14-13.

Example 14-13. Returning fake files with Faker

$factory->define(User::class, function (Faker\Generator S$faker) {
return [
'picture' => S$faker->file(
storage_path('tests'), // source directory
storage_path('app'), // target directory
false // return just filename, not full path

)’

'name' => $faker->name,
1;
s

Faker’s file() method picks a random file from the source directory and copies it to
the target directory, and then returns the filename. So we've just picked a random file
from the storage/tests directory, copied it to the storage/app directory, and set its file-
name as the picture property on our User. At this point we can use a User in tests on
routes that expect the User to have a picture, as seen in Example 14-14.

Example 14-14. Asserting that an image’s URL is echoed

public function test_user_profile_picture_echoes_correctly()

{

Suser = factory(User::class)->create();

332 | Chapter 14: Storage and Retrieval

Sthis->visit("users/{Suser->1d}");
Sthis->see(Suser->picture);

}

Of course, in many contexts you can just generate a random string there without even
copying a file. But if your routes check for the file’s existence or run any operations on
the file, this is your best option.

Session

If you need to assert something has been set in the session, you can use some conve-
nience methods Laravel makes available in every test. All of these methods are avail-
able in your tests on the $this object:

assertSessionHas(Skey, Svalue = null)
Asserts that the session has a value for a particular key, and, if the second param-
eter is passed, that that key is a particular value:

public function test_some_thing()

{
// do stuff

Sthis->assertSessionHas('key', 'value');

}

assertSessionHasAll(array Sbindings)
If passed an array of key/value pairs, asserts that all of the keys are equal to all of
the values. If one or more of the array entries is just a value (with PHP’s default
numeric key), it will just be checked for existence in the session:

Scheck = [

'has',

"hasWithThisValue' => 'thisValue',
1

Sthis->assertSessionHasAll($check);

assertSessionMissing(Skey)
Asserts that the session does not have a value for a particular key.

assertSessionHasErrors($Sbindings = [], Sformat = null)
Asserts that the session has an errors value. This is the key Laravel uses to send
errors back from validation failures.

If the array contains just keys, it will check that errors are set with those keys:

Sthis->post('test-route', ['failing' => 'data'l);
S$this->assertSessionHasErrors(['name', 'email']);

Testing | 333

You can also pass values for those keys, and optionally a Sformat, to check that

the messages for those errors came back the way you expected:
$this->post('test-route', ['failing' => 'data'l]);
S$this->assertSessionHasErrors([

'email' => 'The email field is required.'
], ':message');

assertHasOldInput()
Since you can flash the previous pages input to the session, you may want to
assert that it’s been flashed correctly:

Sthis->post('test-route', ['failing' => 'data']);
$this->assertHasO0ldInput();

Cache
There’s nothing special about testing your features that use cache—just do it:

Cache::put('key', 'value', 15);

Sthis->assertEquals('value', Cache::get('key'));

Laravel uses the “array” cache driver by default in your testing environment, which
just stores your cache values in memory.

Cookies

If you need to set a cookie before testing a route in your application tests, you can
manually pass cookies to one of the parameters of the call() method. To learn more
about call(), check out Chapter 12.

Excluding your cookie from encryption during testing

Your cookies won't work in your tests unless you exclude them
from Laravel’s cookie encryption middleware. You can do this by
teaching the EncryptCookies middleware to temporarily disable
itself for that cookie:

use Illuminate\Cookie\Middleware\EncryptCookies;

$this->app->resolving(
EncryptCookies: :class,
function (Sobject) {
$Sobject->disableFor('cookie-name');
}
);

// ...run test

334 | Chapter 14: Storage and Retrieval

That means you can set and check against a cookie with something like
Example 14-15.

Example 14-15. Running unit tests against cookies

public function test_cookie()

{
$this->app->resolving(EncryptCookies::class, function ($object) {
$object->disableFor('my-cookie');
b
$this->call('get', 'route-echoing-my-cookie-value', [], ['my-cookie' => 'baz']);
$this->see('baz');
}

If, for some reason, youd rather not disable encryption, you can instead set the
encrypted value of the cookie like in Example 14-16.

Example 14-16. Manually encrypting a cookie before setting it

use Illuminate\Contracts\Encryption\Encrypter;

public function test_cookie()

{
SencryptedBaz = app(Encrypter::class)->encrypt('baz');
Sthis->call(
'get',
'route-echoing-my-cookie-value',
[1,
['my-cookie' => S$SencryptedBaz]
);
Sthis->see('baz');
}

If you want to test that a response has a cookie set, you can use either seeCookie() to
test for the cookie:

Sthis->visit('cookie-setting-route');
S$this->seeCookie('cookie-name");

or seePlainCookie() to test for the cookie and to assert that it’s not encrypted.

Testing | 335

TL;DR

Laravel provides simple interfaces to many common storage operations: filesystem
access, sessions, cookies, the cache, and search. Each of these APIs is the same regard-
less of which provider you use, which Laravel enables by allowing multiple “drivers”
to serve the same public interface. This makes it simple to switch providers depend-
ing on the environment, or as the needs of the application change.

336 | Chapter 14: Storage and Retrieval

CHAPTER 15
Mail and Notifications

Sending an application’s users notifications via email, Slack, SMS, or another notifica-
tion system is a common but surprisingly complex requirement. Laravel’s mail and
notification features provide consistent APIs that abstract away the need to pay too
close attention to any particular provider. Just like in Chapter 14, you’ll write your
code once and choose at the configuration level which provider you’ll use to send
your email or notifications.

Mail

Laravel’s mail functionality is a convenience layer on top of SwiftMailer, and out of
the box Laravel comes with drivers for Mailgun, Mandrill, Sparkpost, SES, SMTP,
PHP Mail, and Sendmail.

For all of the cloud services, youll set your authentication information in
config/services.php. However, if you take a look you’ll see there are already keys there
—and in config/mail. php—that allow you to customize your application’s mail func-
tionality in .env using variables like MAIL_DRIVER and MAILGUN_SECRET.

Cloud-based API driver dependencies

If you're using any of the cloud-based API drivers, youll need to
bring Guzzle in with Composer. You can run the following com-
mand to add it:

composer require guzzlehttp/guzzle:"~5.3|~6.0"
If you use the SES driver, you'll need to run the following com-
mand:

composer require aws/aws-sdk-php:~3.0

337

http://swiftmailer.org/

“Classic” Mail

There are two different syntaxes in Laravel for sending mail: classic and mailable. The
mailable syntax is the preferred syntax from 5.3 onward, so were going to focus on
that in this book. But for those who are working in 5.1 or 5.2, here’s a quick look at
how the classic syntax (Example 15-1) works.

Example 15-1. Basic “classic” mail syntax

Mail::send(
'emails.assignment’,
['trainer' => Strainer, 'trainee' => $trainee],
function ($m) use (Strainer, Strainee) {
sm->from(Strainer->email, S$trainer->name);
$m->to(Strainee->email, $trainee->name)->subject('A New Assignment!');

)

The first parameter of Mail::send() is the name of the view. Remember,
emails.assignment means resources/views/emails/assignment.blade.php or resources/
views/emails/assignment.php.

The second parameter is an array of data that you want to pass to the view.

The third parameter is a closure, in which you define how and where to send the
email: from, to, CC, BCC, subject, and any other metadata. Make sure to use any
variables you want access to within the closure. And note that the closure is passed
one parameter, which we've named $m; this is the message object.

Take a look at the old docs to learn about the classic mail syntax.

Basic “Mailable” Mail Usage

Laravel 5.3 introduced a new mail syntax called the “mailable” It works the same as
the classic mail syntax, but instead of defining your mail messages in a closure, you
instead create a specific PHP class to represent each mail.

To make a mailable, use the make:mail Artisan command:

php artisan make:mail Assignment

Example 15-2 shows what that class looks like.

Example 15-2. An autogenerated mailable PHP class
<?php

namespace App\Mail;

338 | Chapter 15: Mail and Notifications

https://laravel.com/docs/5.2/mail

use Illuminate\Bus\Queueable;

use Illuminate\Mail\Mailable;

use Illuminate\Queue\SerializesModels;

use Illuminate\Contracts\Queue\ShouldQueue;

class Assignment extends Mailable

{

use Queueable, SerializesModels;

/**
* Create a new message instance.
*

* @return void
*/
public function __construct()
{
//
}

/**
* Build the message.
*

* @return Sthis

*/
public function build()
{

return $this->view('view.name');
}
}

This class probably looks familiar—it’s shaped almost the same as a Job. It even
imports the Queuable trait for queuing your mail and the SerializesModels trait so
any Eloquent models you pass to the constructor will be serialized correctly.

So, how does this work? The build() method on a mailable is where you’re going to
define which view to use, what the subject is, and anything else you want to tweak
about the mail except who it’s going to. The constructor is the place where you’ll pass
in any data, and any public properties on your mailable class will be available to
the template.

Take a look at Example 15-3 to see how we might update the autogenerated mailable
for our assignment example.

Example 15-3. A sample mailable
<?php
namespace App\Mail;

use Illuminate\Bus\Queueable;

Mail | 339

use Illuminate\Mail\Mailable;
use Illuminate\Queue\SerializesModels;
use Illuminate\Contracts\Queue\ShouldQueue;

class Assignment extends Mailable

{

use Queueable, SerializesModels;

public S$tratiner;
public Strainee;

public function __construct($trainer, $trainee)

{

Sthis->trainer = $trainer;
Sthis->trainee = S$trainee;

}

public function build()
{

return $this->subject('New assignment from . $this->trainer->name)

->view('emails.assignment');

}

Example 15-4 shows how to send a mailable.

Example 15-4. A few ways to send mailables

// Simple send
Mail::to(Suser)->send(new Assignment($trainer, $trainee));

// With CC/BCC/etc.
Mail::to(Suserl))
->cc(Suser?)
->bcc(Suser3)
->send(new Assignment($trainer, $trainee));

// With collections
Mail::to('me@app.com")
->bcc(User::all())
->send(new Assignment(S$Strainer, S$trainee))

Mail Templates

Mail templates are just like any other template. They can extend other templates, use
sections, parse variables, contain conditional or looping directives, and do anything
else you can do in a normal Blade view.

Take a look at Example 15-5 to see a possible emails.assignments template for
Example 15-3.

340 | Chapter 15: Mail and Notifications

Example 15-5. Sample assignment email template

<!-- resources/views/emails/assignment.blade.php -->
<p>Hey {{ $trainee->name }}!</p>

<p>You have received a new training assignment from {{ $trainer->name }}.

Check out your training
dashboard now!</p>

In Example 15-3, both $trainer and $trainee are public properties on your maila-
ble, which makes them available to the template.

If you want to explicitly define which variables are passed to the template, you can
chain the with() method onto your build() call as in Example 15-6.

Example 15-6. Customizing the template variables

public function build()

{
return $this->subject('You have a new assignment!')
->view('emails.assignment"')
->with(['assignment' => $this->event->name]);
}

HTML versus plain-text emails

So far we've used the view() method in our build() call stacks.
This expects the template we're referencing to pass back HTML. If
youd like to pass a plain-text version, the text() method defines
your plain-text view:

public function build()
{

return $this->view('emails.reminder')
->text('emails.reminder_plain');

Methods Available in build()

Here are a few of the methods available to you to customize your message in the
build() method of your mailable:

from(Saddress, Sname = null)
Sets the “from” name and address—represents the author

subject(Ssubject)
Sets the email subject

Mail | 341

attach(SpathToFile, array Soptions = [])
Attaches a file; valid options are mime for MIME type and as for display name

attachData($data, Sname, array Soptions = [])
Attaches a file from a raw string; same options as attach()

priority(Spriority)
Set the email’s priority, where 1 is the highest and 5 is the lowest

Finally, if you want to perform any manual modifications on the underlying Swift
message, you can do that using withSwiftMessage(), as shown in Example 15-7.

Example 15-7. Modifying the underlying SwiftMessage object

public function build()

{
return $this->subject('Howdy!")
->withSwiftMessage(function ($swift) {
Sswift->setReplyTo('noreply@email.com');
b
->view('emails.howdy');
}

Attachments and Inline Images

Example 15-8 shows two options for how to attach files or raw data to your email.

Example 15-8. Attaching files or data to mailables

// Attach a file using the local filename
public function build()

{
return $this->subject('Your whitepaper download')
->attach(storage_path('pdfs/whitepaper.pdf'), [
'mime' => 'application/pdf', // Optional
'as' => 'whitepaper-barasa.pdf' // Optional
D
->view('emails.whitepaper');
}

// Attach a file passing the raw data
public function build()
{
return $this->subject('Your whitepaper download')

->attachData(
file_get_contents(storage_path('pdfs/whitepaper.pdf')),
'whitepaper-barasa.pdf',

[
'mime' => 'application/pdf' // Optional
1

342 | Chapter 15: Mail and Notifications

)

->view('emails.whitepaper');

}

And you can see how to embed images directly into your email in Example 15-9.

Example 15-9. Inlining images

<!-- emails/image.blade.php --!>
Here is an image:

embed(storage_path('embed.jpg')) }}">
0Or, the same image embedding the data:

embedData(
file_get_contents(storage_path('embed.jpg')), 'embed.jpg’
) 3>

Queues

Sending email is a time-consuming task that can cause applications to slow down, so
its common to move sending email to a background queue. It’s so common, in fact,
that Laravel has a set of built-in tools to make it easier to queue your messages
without writing queue jobs for each email.

Configuring queues

Y Everything we'll cover here requires your queues to be configured
correctly. Take a look at Chapter 16 to learn more about how
queues work and how to get them running in your application.

queue()

To queue a mail object instead of sending it immediately, simply pass your mailable
object to Mail: :queue() instead of Mail::send():

Mail::queue(new Assignment($trainer, S$trainee));

later()

Mail::later() works the same as Mail::queue(), but it allows you to add a delay—
either in minutes, or at a specific time by passing an instance of DateTime or Carbon
—to when the email will be pulled from the queue and sent:

Swhen = Carbon::now()->addMinutes(30);
Mail::later($when, new Assignment($trainer, S$trainee));

Mail | 343

Specifying the queue or connection

For both queue() and later(), if youd like to specify which queue or queue connec-
tion your mail is added to, use the onConnection() and onQueue() methods on your
mailable object:

$message = (new Assignment(Strainer, $trainee))
->onConnection('sqgs")
->onQueue('emails');

Mail::to(Suser)->queue($message);

Local Development

This is all well and good for sending mail in your production environments. But how
do you test this all out? There are three primary tools you'll want to consider: Lara-
vel’s log driver, a Software as a Service (SaaS) app named Mailtrap, and the “universal
to” configuration option.

The log driver

Laravel provides a log driver that logs every email you try to send to your local lara-
vel.log file (which is, by default, in storage/logs).

If you want to use this, edit .env and set MAIL_DRIVER to log. Now open up or
tail storage/logs/laravel.log and send an email from your app. You'll see something
like this:

Message-ID: <04ee2e97289c68f0c9191f4b04fcOdel@localhost>
Date: Tue, 17 May 2016 02:52:46 +0000

Subject: Welcome to our app!

From: Matt Stauffer <matt@mattstauffer.co>

To: freja@jensen.no

MIME-Version: 1.0

Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: quoted-printable

Welcome to our app!

Mailtrap.io

Mailtrap is a service for capturing and inspecting emails in development environ-
ments. You send your mail to the Mailtrap servers via SMTP, but instead of sending
those emails off to the intended recipients, Mailtrap captures them all and provides
you with a web-based email client for inspecting them, regardless of which email
address is in the to field.

To set up Mailtrap, sign up for a free Mailtrap account and visit the base dashboard
for your demo. Copy your username and password from the SMTP column.

344 | Chapter 15: Mail and Notifications

https://mailtrap.io

Now edit your app’s .env file and set the following values in the mail section:

MAIL_DRIVER=smtp

MAIL_HOST=mailtrap.io

MAIL_PORT=2525
MAIL_USERNAME=your_username_from_mailtrap_here
MAIL_PASSWORD=your_password_from_mailtrap_here
MAIL_ENCRYPTION=null

Now, any email you send from your app will show up in your Mailtrap inbox.

Universal to

If youd like to inspect the emails in your preferred client, you can override the to
field on each message with the “universal to” configuration setting. To set this up,
add a “to” key to your config/mail.php file that looks something like this:
"to' = [
'address' => 'matt@mattstauffer.co',
'name' => 'Matt Testing My Application'
1
Note that you’ll need to actually set up a real email driver with something like Mail-
gun or Sendmail in order to use this.

Notifications

Most of the mail that’s sent from web apps really has the purpose of notifying users
that a particular action has happened or needs to happen. As users’ communication
preferences grow more and more diverse, we gather ever more—and more disparate
—packages to communicate via Slack, SMS, and other means.

Laravel 5.3 introduced a new concept in Laravel called, fittingly, notifications. Just like
mailables, a notification is a PHP class that represents a single communication that
you might want to send to your users. For now, let’s imagine were notifying users of
our physical training app that they have a new workout available on our app.

Each class represents all of the information necessary to send notifications to your
users using one or many notification channels. A single notification could send an
email, send an SMS via Nexmo, send a WebSockets ping, add a record to a database,
send a message to a Slack channel, and much more.

So, let’s create our notification:
php artisan make:notification WorkoutAvailable

Example 15-10 shows what that gives us.

Notifications | 345

Example 15-10. An autogenerated notification class
<?php
namespace App\Notifications;

use Illuminate\Bus\Queueable;

use Illuminate\Notifications\Notification;

use Illuminate\Contracts\Queue\ShouldQueue;

use Illuminate\Notifications\Messages\MailMessage;

class WorkoutAvailable extends Notification

{

use Queueable;

/**
* Create a new notification instance.
*

* @return void
*/
public function __construct()

{
}

//

/**
* Get the notification's delivery channels.
*

* @param mixed Snotifiable
* @return array
*/
public function via($notifiable)

{
}

return ['mail'];

/**
* Get the mail representation of the notification.
*
* @aram mixed Snotifiable
* @return \Illuminate|Notifications|\Messages|MailMessage
*/
public function toMail(Snotifiable)
{
return (new MailMessage)
->1ine('The introduction to the notification.')
->action('Notification Action', 'https://laravel.com')
->1line('Thank you for using our application!');

}
/**

* Get the array representation of the notification.

346 | Chapter 15: Mail and Notifications

*

* @param mixed Snotifiable

* @return array

*/
public function toArray($notifiable)
{

return [
//
IH

}

We can learn a few things here. First, were going to pass in relevant data to
the constructor. Second, there’s a via() method that allows us to define, for a given
user, which notification channels to use ($notifiable represents whatever entities
you want to notify in your system; for most apps, it'll be a user, but that’s not always
the case). And third, there are individual methods for each notification channel that
allow you to specifically define how to send one of these notifications through that
channel.

When would a $notifiable not be a user?

While the most common notification targets will be users, it’s pos-
sible you may want to notify something else. This may simply be
because your application has multiple user types—so, you might
want to be able to notify both “trainers” and “trainees.” But you also
might find yourself wanting to notify a “group,” a “company, or
a “server”

So, lets modify this class for our WorkoutAvailable example. Take a look at
Example 15-11.

Example 15-11. Our WorkoutAvailable notification class

class WorkoutAvailable extends Notification

{

use Queueable;

public Sworkout;

public function __construct($workout)
{

S$this->workout = S$workout;
}

public function via($notifiable)

{

Notifications | 347

// This method doesn't exist on the User... we're going to make it up
return $notifiable->preferredNotificationChannels();

}
public function toMail(Snotifiable)
{
return (new MailMessage)
->1line('You have a new workout available!')
->action('Check it out now', route('workout', [$this->workout]))
->1line('Thank you for training with us!');
}
public function toArray($notifiable)
{
return [];
}

}
Defining the via() Method for Your Notifiables

As you can see in Example 15-11, we're somehow responsible for deciding, for each
notification and each notifiable, which notification channels we're going to use.

You could just send everything as mail or just send everything as SMS
(Example 15-12).

Example 15-12. Simplest possible via() method

public function via($notifiable)

{

return 'nexmo’;

}

You could also let each user choose their one preferred method and save that on the
User itself (Example 15-13).

Example 15-13. Customizing the via() method per user

public function via($notifiable)

{

return $notifiable->preferred_notification_channel;

}

Or, as we imagined in Example 15-11, you could create a method on each notifiable
that allows for some complex notification logic. For example, you could notify the
user over certain channels during work hours and other channels in the evening.
What is important is that via() is a PHP class method, so you can do whatever com-
plex logic you want there.

348 | Chapter 15: Mail and Notifications

Sending Notifications

There are two ways to send a notification: using the Notification facade, or adding
the Notifiable trait to an Eloquent class (likely your User class).

Sending notifications using the Notifiable trait

Any model that imports the Laravel\Notifications\Notifiable trait (which the
App\User class does by default) has a notify() method that can be passed a notifica-
tion, which will look like Example 15-14.

Example 15-14. Sending a notification using the Notifiable trait
use App\Notifications\WorkoutAvailable;

Suser->notify(new WorkoutAvailable($workout));

Sending notifications with the Notification facade

The Notification facade is the clumsier of the two methods, since you have to pass
both the notifiable and the notification. However, it’s helpful because you can choose
to pass more than one notifiable in at the same time, like you can see in
Example 15-15.

Example 15-15. Sending notifications using the Notification facade
use App\Notifications\WorkoutAvailable;

Notification::send(User::all(), new WorkoutAvailable($workout));

Queueing Notifications

Most of the notification drivers need to send HTTP requests to send their notifica-
tions, which could slow down your user experience, so you probably want to queue
your notifications. All notifications import the Queuable trait by default, so all you
need to do is add implements ShouldQueue to your notification and Laravel will
instantly move it to a queue.

As with any other queued features, you'll need to make sure you have your queue set-
tings configured correctly and a queue worker running.

If youd like to delay the delivery of your notifcation, you can run the delay()
method on the notification:

$delayUntil = Carbon::now()->addMinutes(15);

Suser->notify((new WorkoutAvailable($workout))->delay(SdelayUntil));

Notifications | 349

Out-of-the-Box Notification Types

Out of the box, Laravel comes with notification drivers for email, database, broadcast,
Nexmo SMS, and Slack. I'll cover each briefly, but I'd recommend referring to the
docs for more thorough introductions to each.

It’s also easy to create your own notification drivers, and dozens of people already
have; you can find them at Laravel Notification Channels website.

Email notifications

Let’s take a look at how the email from our earlier example, Example 15-11, is built:

public function toMail(Snotifiable)

{
return (new MailMessage)
->1ine('You have a new workout available!')
->action('Check it out now', route('workout', [$this->workout]))
->1line('Thank you for training with us!');
}

The result is shown in Figure 15-1. The email notification system puts your applica-
tion’s name in the header of the email; you can customize that app name in the name
key of config/app.php.

This email is automatically sent to the email property on the notifiable, but you can
customize this behavior by adding a method to your notifiable class named

routeNotificationForMail() that returns the email address youd like email notifi-
cations sent to.

The email’s subject is set by parsing the notification class name and converting it to
words. So, our WorkoutAvatilable notification would have the default subject of Work
out Available. We can also customize this by chaining the subject() method on
our MailMessage in the toMail() method.

If you want to modify the templates, publish them and edit to your heart’s content:
php artisan vendor:publish --tag=laravel-notifications

You can also change the style of the default template to be an “error” message, which
uses a bit of different language and changes the primary button color to red. Just add
a call to the error() method to your MailMessage call chain in the toMail() method.

350 | Chapter 15: Mail and Notifications

https://laravel.com/docs/notifications
http://laravel-notification-channels.com/

Train Remote

Hello!

You have a new workout available!

Check it out now

Thank you for training with us!

Regards,
Train Remote

If you're having trouble clicking the "Check it out now" button, copy and paste the URL below
into your web browser:

https://trainremote.co/workouts/12345

© 2016 Train Remote. All rights reserved.

Figure 15-1. An email sent with the default notification template

Database notifications

You can send notifications to a database table using the database notification chan-
nel. First, create your table with php artisan notifications:table. Next, create a
toDatabase() method on your notification and return an array of data there. This
data will be encoded as JSON and stored in the database table’s data column.

The Notifiable trait adds a notifications relationship to any model it's imported
in, allowing you to easily access records in the notifications table. So if youre using
database notifications, you could so something like this:

User::first()->notifications->each(function ($notification) {
// do something
s

The database notification channel also has the concept of whether or not a notifica-
tion is “read” You can scope to only the “unread” notifications:

User::first()->unreadNotifications->each(function ($notification) {
// do something
s

Notifications | 351

And you can mark one or all notifications as read:

// Individual
User::first()->notifications->each(function ($notification) {
if (Scondition) {
$notification->markAsRead();
}
b;

// All

User::first()->unreadNotifications->markAsRead();

Broadcast notifications

The broadcast channel sends notifications out using Laravel’s event broadcasting
features (Echo).

Create a toBroadcast() method on your notification and return array of data, and if
your app is correctly configured for event broadcasting, that data will be broadcast on
a private channel named {notifiable}.{id}. The {id} will be the ID of the notifia-
ble, and {notifiable} will be the notifiable’s fully qualified class name, with the
slashes replaced by periods—for example, the private channel for the App\User with
the ID of 1 will be App.User.1.

SMS notifications

SMS notifications are sent via Nexmo, so if you want to send SMS notifications, sign
up for a Nexmo account and follow the instructions in the docs. Like with the other
channels, you'll be setting up a toNexmo() method and customizing the SMS message
there.

Slack notifications

The slack notification channel allows you to customize the appearance of your noti-
fications and even attach files to your notifications. Like with the other channels,
you'll set up a toSlack() method and customize the message there.

Testing
Let’s take a look at how to test mail and notifications.
Mail

There are two options for testing mail in Laravel. If youre using the traditional mail
syntax, I'd recommend using a tool called MailThief, which Adam Wathan wrote for
Tighten. Once you bring MailThief into your application with Composer, you can use

352 | Chapter 15: Mail and Notifications

https://laravel.com/docs/notifications
https://github.com/tightenco/mailthief

MailThief::hijack() in your tests to make MailThief capture any calls to the Mail
facade or any mailer classes.

MailThief then makes it possible to make assertions against the senders, recipients,
CC and BCC values, and even content and attachments of your mail. Take a look at
the GitHub repo to learn more, or bring it into your app:

composer require tightenco/mailthief --dev

If you are using mailables, there’s a simple syntax for writing assertions against your
sent mail (Example 15-16).

Example 15-16. Asserting against mailables

public function test_signup_triggers_welcome_email()

{
Mail::assertSent(WelcomeEmail::class, function ($e) {
return $e->subject == 'Welcome!';
H;
// You can also use assertSentTo() to explicitly test the recipients
}
Notifications

Laravel provides a built-in set of assertions for testing your notifications.
Example 15-17 demonstrates.

Example 15-17. Asserting notifications were sent

public function test_new_signups_triggers_admin_notification()

{
Notification::assertSentTo(Suser, NewUsersSignedup::class,
function (Sn, Schannels) {
return $n->user->email == 'user-who-signed-up@gmail.com’
&& Schannels == ['mail'];
b
// You can also use assertNotSentTo()
}

Testing | 353

TL;DR

Laravel’s mail and notification features provide simple, consistent interfaces to a vari-
ety of messaging systems. Laravel’s mail system uses “mailables,” PHP classes that rep-
resent emails, to provide a consistent syntax to different mail drivers. The notification
system makes it easy to build a single notification that can be delivered in many dif-
ferent media—from emails to SMS messages to physical postcards.

354 | Chapter 15: Mail and Notifications

CHAPTER 16

Queues, Jobs, Events, Broadcasting,
and the Scheduler

So far we've covered some of the most common structures that power web applica-
tions: databases, mail, filesystems, and more. Each of these are common across a
majority of applications and frameworks.

Laravel also provides facilities for some less common architecture patterns and appli-
cation structures. In this chapter we'll cover Laravel’s tools for implementing queues,
queued jobs, events, and WebSocket event publishing. We'll also cover Laravels
scheduler, which makes cron a thing of the past.

Queues

To understand what a queue is, just think about the idea of “queueing up” in a line at
the bank. Even if there are multiple lines—queues—only one person is being served
at a time from each queue, and each person will eventually reach the front and be
served. In some banks, it’s a strict first-in-first-out sort of policy, but in other banks,
there’s not an exact guarantee that someone won't cut ahead of you in line at some
point. Essentially, someone can get added to the queue, be removed from the queue
prematurely, or be successfully “processed” and then removed. Someone might even
hit the front of the queue, not be able to be served correctly, return to the queue for a
time, and then be processed again.

Queues in programming are very similar. Your application adds a “job” to a queue,
which is a chunk of code that tells the application how to perform a particular behav-
ior. Then some other separate application structure, usually a “queue worker,” takes
the responsibility for pulling jobs off of the queue one at a time and performing the

355

appropriate behavior. Queue workers can delete the jobs, return them to the queue
with a delay, or mark them as successfully processed.

Laravel makes it easy to serve your queues using Redis, beanstalkd, Amazon’s SQS
(Simple Queue Service), or a database table. You can also choose the sync driver to
have the jobs run right in your application without actually being queued, or the null
driver for jobs to just be discarded; these two are usually used in local development or
testing environments.

Why Queues?

Queues make it easy to remove a costly or slow process from any synchronous call.
The most common example is sending mail—doing so can be slow, and you don’t
want your users to have to wait for mail to send in response to their actions. Instead,
trigger a “send mail” queued job and let the users get on with their day. Sometimes
you may not just want to save your users time, but you might have a process like a
cron job or a webhook that has a lot of work to process; rather than letting it all run at
once (and potentially time out), you may choose to queue its individual pieces and let
the queue worker process them one at a time.

Additionally, if you have some heavy processing that’s more than your server can
handle, you can spin up more than one queue worker to work through your queue
faster than your normal application server could on its own.

Basic Queue Configuration

Like many other Laravel features that abstract multiple providers, queues have their
own dedicated config file (config/queue.php) that allows you to set up multiple drivers
and define which will be the default. This is also where you’ll store your SQS, Redis,
or beanstalkd authentication information.

Simple beanstalkd queues on Laravel Forge

We haven’t covered Laravel Forge in much depth, but it’s a hosting
service provided by Taylor Otwell, the creator of Laravel. Every
server you create has beanstalkd configured automatically, so if you
visit any site’s Forge console, you can just go to the Queue Workers
tab and hit Start Worker and you’re ready to use beanstalkd as your
queue driver; you can leave all the default settings, and no other
work is necessary.

Queued Jobs

Remember our bank analogy? Each person in the bank “queue” (line) is, in program-
ming terms, a job. This job could be shaped any way; it could just be a string, or an

356 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

http://forge.laravel.com/

array, or an object. In Laravel, its a collection of information containing the job
name, the data payload, the number of attempts that have been made so far to process
this job, and some other simple metadata.

But you don’t need to worry about that in your interactions with Laravel. Laravel pro-
vides a structure called a Job, which is intended to encapsulate a single task—a behav-
ior that your application can be commanded to do—and allow it to be added to and
pulled from a queue. There are also simple helpers to make it easy to queue Artisan
commands and mail.

Let’s start with an example where, every time a user changes his plan with your SaaS
app, you want to rerun some calculations about your overall profit.

Creating a job
As always, there’s an Artisan command for that:
php artisan make:job CrunchReports

Take a look at Example 16-1 to see what you'll get.

Example 16-1. The default template for jobs in Laravel
<?php

use Illuminate\Bus\Queueable;

use Illuminate\Queue\SerializesModels;

use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Contracts\Queue\ShouldQueue;

class CrunchReports implements ShouldQueue

{

use InteractsWithQueue, Queueable, SerializesModels;

/'k*
* Create a new job instance.
*

* @return void
*/
public function

{
}

_construct()

//

/'k*
* Execute the job.
*

* @return void

*/
public function handle()
{

Queues | 357

//
}

As you can see, this template imports the Queueable, InteractsWithQueue, and
SerializesModels traits, and implements the ShouldQueue interface. Prior to Laravel
5.3, some of this functionality came in through the parent App\Jobs class.

We also get two methods from this template: the constructor, which you’ll want to use
to attach data to the job, and the handle() method, which is where the job’s logic
should reside (and is also the method signature you’ll use to inject dependencies).

The traits and interface provide the class with the ability to be added to, and interact
with, the queue. Queueable allows you to specify how Laravel should push this job to
the queue; InteractsWithQueue allows each job, while being handled, to control its
relationship with the queue, including deleting or requeueing itself; and Serializes
Models gives the job the ability to serialize and deserialize Eloquent models.

Serializing models

The SerializesModels trait gives the jobs the ability to serialize
injected models so that your jobs handle() method will have
access to them. However, because it’s too difficult to reliably serial-
ize an entire Eloquent object, the trait ensures that just the primary
keys of any attached Eloquent objects are serialized when the job is
pushed onto the queue. When the job is deserialized and handled,
the trait pulls those Eloquent models fresh from the database by
their primary key. This means that when your job runs it will be
pulling a fresh instance of this model, not whatever state it was in
when you queued the job.

Let’s fill out the methods for our sample class, as in Example 16-2.

Example 16-2. An example job

use App\ReportGenerator;
use Illuminate\Log\Writer as Logger;

class CrunchReports implements ShouldQueue

{

use InteractsWithQueue, SerializesModels;
protected S$user;

public function __construct($user)

{

358 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Sthis->user = Suser;

}

public function handle(ReportGenerator $generator, Logger $logger)

{

Sgenerator->generateReportsForUser($this->user);
$logger->info('Generated reports.');
}

We're expecting the User instance to be injected when we create the job, and then
when it’s handled we're typehinting a ReportGenerator class (which we presumably
wrote) and a Logger (which Laravel provides). Laravel will read both typehints and
inject those dependencies automatically.

Pushing a job onto a queue

There are two primary ways you can push a job onto a queue: the global dispatch()
helper and the methods provided by the DispatchesJobs trait, which is imported by
default in every controller.

With each, create an instance of your job, attach any necessary data by passing it to
the constructor, and pass it to the dispatch() method (see Example 16-3).

Example 16-3. Dispatching jobs

// In a controller
public function index()

{

Suser = auth()->user();

Sthis->dispatch(new \App\Jobs\CrunchReports(Suser));
}

// Elsewhere
dispatch(new \App\Jobs\CrunchReports(Suser));

There are three settings you can control in order to customize exactly how you dis-
patch a job: the connection, the queue, and the delay.

Customizing the connection. If you ever have multiple queue connections in place at
once, you can customize the connection by running onConnection() on your instan-
tiated job:

dispatch((new DoThingJob)->onConnection('redis'));

Queues | 359

Customizing the queue. Within queue servers, you can specify which named queue
youre pushing a job onto. For example, you may differentiate your queues based on
their importance, naming one low and one high.

You can customize which queue youre pushing a job onto with the onQueue()
method:

dispatch((new DoThingJob)->onQueue('high'));

Customizing the delay. You can customize the amount of time your queue workers
should wait before processing a job with the delay() method, which accepts an inte-
ger representing the number of seconds to delay a job:

// Delays one minute before releasing the job to queue workers
dispatch((new DoThingJob)->delay(60));

Note that Amazon SQS doesn’t allow delays longer than 15 minutes.

Running a Queue Worker

So what is a queue worker, and how does it work? In Laravel, it’s an Artisan com-
mand that stays running forever (until it’s stopped manually) and takes the responsi-
bility for pulling down jobs from your queue and running them:

php artisan queue:work

This command starts a daemon “listening” to your queue; every time there are jobs
on the queue, it will pull down the first job, handle it, delete it, and move on to the
next. If at any point there are no jobs, it “sleeps” for a configurable amount of time
before checking again to see if there are any more jobs.

You can define how many seconds a job should be able to run before the queue lis-
tener stops it (--timeout), how many seconds the listener should “sleep” when there
are no jobs left (--sleep), how many tries each job should be allowed before being
deleted (- -tries), which connection the worker should listen to (the first parameter
after queue:work), and which queues it should listen to (- -queue=):

php artisan queue:work redis --timeout=60 --sleep=15 --tries=3
- -queue=high,medium

You can also process just a single job with php artisan queue:work.

Handling Errors

So, what happens when something goes wrong with your job when it’s in the middle
of processing?

360 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Exceptions in handling

If an exception is thrown, the queue listener will release that job back onto the queue.
That job will be rereleased to be processed again and again until it is able to finish
successfully or until it has been attempted the maximum number of times allowed by
your queue listener.

Limiting the number of tries

The maximum number of tries is defined by the --tries switch passed to the
queue:listen or queue:work Artisan commands.

The danger of infinite retries

If you don't set - -tries, or if you set it to 0, the queue listener will
allow for infinite retries. That means if there are any circumstances

" in which a job could just never be satisfied—for example, if it relies
on a tweet that has since been deleted—your app will slowly crawl
to a halt as it forever retries uncompletable jobs.

The documentation and Laravel Forge both show 3 as the default
starting point for the maximum number of retries. So, in case of
confusion, start there and adjust:

php artisan queue:listen --tries=3

If at any point youd like to check how many times a job has been attempted already,
use the attempts() method on the job itself, as in Example 16-4.

Example 16-4. Checking how many times a job has already been tried

public function handle()
{

if (Sthis->attempts() > 3) {
//
}
}

Handling failed jobs

Once a job has exceeded its allowable number of retries, it's considered a “failed” job.
Before you do anything else—even if all you want to do is limit the number of times a
job can be tried—you’ll need to create the “failed jobs” database table.

Queues | 361

There’s an Artisan command to create the migration (and you’ll then want to
migrate):

php artisan queue:failed-table
php artisan migrate

Any job that has surpassed its maximum number of allowed attempts will be dumped
there. But there are quite a few things you can do with your failed jobs.

First, you can define a failed() method on the job itself, which will run when that
job fails (see Example 16-5).

Example 16-5. Defining a method to run when a job fails

class CrunchReports implements ShouldQueue

{
public function failed()
{
// Do whatever you want
}
}

Next, you can register a global handler for failed jobs. Somewhere in the application’s
bootstrap—if you don’t know where to put it, just put it in the boot() method of
AppServiceProvider—place the code in Example 16-6 code to define a listener.

Example 16-6. Registering a global handler to handle failed jobs

// Some service provider
use Illuminate\Support\Facades\Queue;

public function boot()
{
Queue::failing(function (Sconnection, $job, $data) {
// Do whatever you want
b;
}

There is also a suite of Artisan tools for interacting with the failed jobs table.

queue: failed shows you a list of your failed jobs:

php artisan queue:failed

362 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

The list will look something like this:

B L ET T TP Fommmmeaa TR LT L +
| ID | Connection | Queue | Class | Failed At

B L ET T TP Fommmmeaa TR LT L +
| 9 | database | default | App/Jobs/AlwaysFails | 2016-01-26 03:42:55 |
B L ET T TP Fommmmeaa TR LT L +

From there, you can grab the ID of any individual failed job and retry it with
queue:retry:

php artisan queue:retry 9

If youd rather retry all of the jobs, pass all instead of an ID:
php artisan queue:retry all

You can delete an individual failed job with queue: forget:
php artisan queue:forget 5

And you can delete all of your failed jobs with queue: flush:

php artisan queue:flush

Controlling the Queue

Sometimes, from within the handling of a job, you’ll want to add conditions that will
potentially either release the job to be restarted later or delete the job forever.

To release a job back into the queue, use the release() command, as in
Example 16-7.

Example 16-7. Releasing a job back onto the queue

public function handle()
{

if (condition) {
$this->release($numberOfSecondsToDelayBeforeRetrying);
}
}

If you want to delete a job during its handling, you can just return at any point, as
seen in Example 16-8; that’s the signal to the queue that the job was handled appro-
priately and should not be returned to the queue.

Example 16-8. Deleting a job

public function handle()
{

Queues | 363

if ($jobShouldBeDeleted) {
return;
}
}

Queues Supporting Other Functions

The primary use for queues is to push jobs onto, but you can also queue mail using
the Mail::queue functionality. You can learn more about this in “queue()” on page
343. You can also queue Artisan commands, which we covered in Chapter 7.

Events

With jobs, the calling code informs the application that it should do something:
CrunchReports, or NotifyAdminOfNewSignup.

With an event, the calling code instead informs the application that something hap-
pened: UserSubscribed, or UserSignedUp, or ContactWasAdded. Events are notifica-
tions that something has taken place.

Some of these events may be “fired” by the framework itself. For example, Eloquent
models fire events when they are saved, or created, or deleted. But some events are
also manually triggered by the application’s code.

An event being fired doesn't do anything on its own. However, you can bind event
listeners, whose sole purpose is to listen for the broadcasting of specific events and to
act in response. Any event can have anywhere from zero to many event listeners.

Laravel’s events are structured like the observer, or “pub/sub,” pattern. Many events
are fired out into the application; some may never be listened for, and others may
have a dozen listeners. The events don’t know or care.

Firing an Event

There are three ways to fire an event. You can use the Event facade, inject the Dis
patcher, or use the event() global helper:

Event::fire(new UserSubscribed(Suser, $plan));

// or
$dispatcher = app(Illuminate\Contracts\Events\Dispatcher);
Sdispatcher->fire(new UserSubscribed(S$Suser, $plan));

// or

event(new UserSubscribed(Suser, S$plan));

If in doubt, I'd recommend using the global helper function.
To create an event to fire, use the make:event Artisan command:

php artisan make:event UserSubscribed

364 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

That’ll make a file that looks something like Example 16-9.

Example 16-9. The default template for a Laravel event

<?php

namespace App\Events;

use
use
use
use
use
use

Illuminate\Broadcasting\Channel;
Illuminate\Queue\SerializesModels;
Illuminate\Broadcasting\PrivateChannel;
Illuminate\Broadcasting\PresenceChannel;
Illuminate\Broadcasting\InteractsWithSockets;
Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class UserSubscribed

{

}

Let’s take a look at what we get here. SerializesModels works just like with jobs; it
allows you to accept Eloquent models as parameters. InteractsWithSockets, Should
Broadcast, and the broadcastOn() method provide the backing functionality for
broadcasting events using WebSockets, which we'll cover in a bit.

It might seem strange that there’s no handle() or fire() method here. But remem-
ber, this object exists not to determine a particular action, but just to encapsulate
some data. The first piece of data is its name; UserSubscribed tells us that a particu-
lar event happened (a user subscribed). The rest of the data is any data we pass into

use InteractsWithSockets, SerializesModels;

/**
* Create a new event instance.
*

* @return void
*/
public function __construct()

{
}

//

/**
* Get the channels the event should be broadcast on.
*

* @return Channel/array
*/
public function broadcastOn()

{
}

return new PrivateChannel('channel-name');

the constructor and associate with this entity.

Example 16-10 shows what we might want to do with our UserSubscribed event.

Example 16-10. Injecting data into an event

class UserSubscribed

{
use InteractsWithSockets, SerializesModels;
public Suser;
public $plan;
public function __construct($user, $plan)
{
Sthis->user = Suser;
Sthis->plan = $plan;
}
}

Now we have an object that appropriately represents the event that happened:
$event->user subscribed to the $event->plan plan.

Listening for an Event
We have an event, and the ability to fire it. Now let’s look at how to listen for it.

First, we'll create an event listener. Let’s say we want to email the app’s owner every
time a new user subscribes:

php artisan make:1listener EmailOwnerAboutSubscription --event=UserSubscribed

That gives us the file in Example 16-11.

Example 16-11. The default template for a Laravel event listener
<?php
namespace App\Listeners;

use App\Events\UserSubscribed;
use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Contracts\Queue\ShouldQueue;

class EmailOwnerAboutSubscription
{
/**
* Create the event listener.
*

* @return void
*/

public function __construct()

366 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

{
}

//

/'k*
* Handle the event.
*

* @param UserSubscribed Sevent

* @return void

*/
public function handle(UserSubscribed S$Sevent)
{

//
}
}

This is where the action happens—where the handle() method lives. This method
expects to be passed an event of type UserSubscribed and act in response to it.

So, let’s make it send an email (Example 16-12).

Example 16-12. A sample event listener

use Illuminate\Contracts\Mail\Mailer;

class EmailOwnerAboutSubscription

{
protected Smailer;
public function __construct(Mailer $mailer)
{
Sthis->mailer = $mailer;
}
public function handle(UserSubscribed $event)
{
Sthis->mailer->send(
new OwnerSubscriptionEmail($Sevent->user, $event->plan)
);
}
}

Great! Now, one last task: we need to set this listener up to listen to the UserSubscri
bed event. We'll set that up in the $listen property of the EventServiceProvider
class (see Example 16-13).

Events | 367

Example 16-13. Binding listeners to events in EventServiceProvider

class EventServiceProvider extends ServiceProvider
{
protected S$listen = [
\App\Events\UserSubscribed::class => [
\App\Listeners\EmailOwnerAboutSubscription::class,
1,
1;

As you can see, the key of each array entry is the class name of the event, and
the value is an array of listener class names. We can add as many class names as we
want under the UserSubscribed key and they will all listen and respond to each User
Subscribed event.

Event subscribers

There’s one more structure you can use to define the relationship between your
events and their listeners. Laravel has a concept called an event subscriber, which is a
class that contains a collection of methods that act as separate listeners to unique
events, and also contains the mapping of which method should handle which event.
In this case, it’s easier to show than to tell; take a look at Example 16-14.

Example 16-14. A sample event subscriber
<?php
namespace App\Listeners;

class UserEventSubscriber

{ public function onUserSubscription($event)
{ // Handles the UserSubscribed event
}
public function onUserCancellation($event)
‘ // Handles the UserCancelled event
}

public function subscribe($events)
{
Sevents->listen(
\App\Events\UserSubscribed: :class,
'App\Listeners\UserEventSubscriber@onUserSubscription’

);

Sevents->listen(
\App\Events\UserCancelled: :class,

368 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

"App\Listeners\UserEventSubscriber@onUserCancellation'

);
}

Subscribers need to define a subscribe() method, which is passed an instance of the
event dispatcher. We'll use that to pair events with their listeners, but in this case,
those are methods on this class, instead of entire classes. As a refresher, any time you
see an @ inline like this means the class name is to the left of the @ and the method
name is to the right.

So, in Example 16-14, were defining that the onUserSubscription() method of this
subscriber will listen to any UserSubscribed events.

There’s one last thing we need to do: in App\Providers\EventServiceProvider, we
need to add our subscriber’s class name to the $subscribe property, as seen in
Example 16-15.

Example 16-15. Registering an event subscriber

class EventServiceProvider extends ServiceProvider

{

protected $subscribe = [
\App\Listeners\UserEventSubscriber::class
I;
}

Broadcasting Events over WebSockets, and Laravel Echo

WebSocket (often called WebSockets) is a protocol, popularized by Pusher, that
makes it simple to provide near-real-time communication between web devices.
Rather than relying on information passing via HTTP requests, WebSockets libraries
open a direct connection between the client and the server. WebSockets are behind
tools like the chat boxes in Gmail and Facebook.

WebSockets work best with small pieces of data passed in a pub/sub structure—just
like Laravel's events. Laravel has a built-in set of tools that make it easy to define
that one or more of your events should be broadcast to a WebSocket server; this
makes it easy, for example, to have a MessageWasReceived event that is published to
the notifications box of a certain user or set of users, the instant a message arrives at
your application.

Broadcasting Events over WebSockets, and Laravel Echo | 369

Laravel Echo

Laravel also has a more powerful tool designed for more complex event broadcasting.
If you need presence notification, or want to keep your rich frontend data model in
sync with your Laravel app, check out Laravel Echo, which we'll cover toward the end
of this chapter. Much of what comprises Echo is built into the Laravel core, which we
cover in “Advanced Broadcasting Tools” on page 374, but some of it requires pulling
in the external JavaScript Echo library, which we cover in “Laravel Echo (the Java-
Script Side)” on page 378.

Configuration and Setup

Take a look at config/broadcasting.php to find the configuration settings for your
event broadcasting. Laravel supports three drivers for broadcasting: Pusher, a paid
Saa$S offering; Redis, for locally run WebSocket servers; and log, for local develop-
ment and debugging.

Queue listeners

In order for event broadcasting to move quickly, Laravel pushes the
instruction to broadcast them onto a queue. That means you'll
need to have a queue worker running (or use the sync queue driver
for local development). See “Running a Queue Worker” on page
360 to learn how to run a queue worker.

Laravel suggests a default delay of three seconds before the queue
worker looks for new jobs. However, with event broadcasting, you
may notice some events take a second or two to broadcast. To
speed this up, update your queue settings to only wait one second
before looking for new jobs.

Broadcasting an Event

To broadcast an event, you need to mark that event as a broadcast event by having it
implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast interface.
This interface requires you to add the broadcastOn() method, which will return an
array of either strings or Channel objects, each representing a WebSocket channel.

370 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

The Structure of WebSocket events

Every event you send with WebSockets can have three primary characteristics: the
name, the channel, and the data.

The name of an event might be something like user-was-subscribed, but Laravel’s
default is to use the fully qualified class name of the event; i.e., so something like App
\Events\UserSubscribed. You can customize this by passing the name to the
optional broadcastAs() method in your event class.

The channel is the way of describing which clients should receive this message. Its a
very common pattern to have a channel for each user (e.g., users.1, users.2, etc.),
and possibly a channel for all users (e.g., users), and maybe one for just users who
are members of a certain account (accounts.1). If the channel you're targeting is a
private channel, preface the channel name with private-, and if it’s a presence chan-
nel, preface the channel name with presence-. So, a private Pusher channel named
groups.5 should be, instead, private-groups.5. If you use Laravel’s PrivateChannel
and PresenceChannel objects in your broadcastOn() method, they’ll take care of
adding those prefaces to your channel names for you.

The data is a payload, usually JSON, of information relevant to the event—the mes-
sage, maybe, or information about the user or plan that can be acted upon by the con-
suming JavaScript.

Example 16-16 shows our UserSubscribed event, modified to broadcast on two
channels: one for the user (to confirm the user’s subscription) and one for admins (to
notify them of a new subscription).

Example 16-16. An event broadcasting on multiple channels

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class UserSubscribed extends Event implements ShouldBroadcast

{

use InteractsWithSockets, SerializesModels;

public Suser;
public $plan;

public function

{

_construct($user, $plan)

Suser;
$plan;

S$this->user
Sthis->plan

Broadcasting Events over WebSockets, and Laravel Echo | 371

public function broadcastOn()
{
// String syntax
return [
'users.' . $this->user->id,
'admins'’

1;

// Channel object syntax
return [
new Channel('users.' . S$this->user->id),
new Channel('admins'),
// If it were a private channel: new PrivateChannel('admins'),
// If it were a presence channel: new PresenceChannel('admins'),

1;
}

By default, any public properties of your event will be serialized as JSON and sent
along as the data of your broadcast event. That means the data of one of our broad-
cast UserSubscribed events might look like Example 16-17.

Example 16-17. Sample broadcast event data

{
'user': {
'id': 5,
'name': 'Fred McFeely',
1,
'plan': 'silver'
}

You can override this by returning an array of data from the broadcastWith()
method on your event, as in Example 16-18.

Example 16-18. Customizing the broadcast event data

public function broadcastWith()

{
return [
'userId' => S$this->user->id,
'plan' => $this->plan
1;
}

Finally, you can customize which queue your event is pushed onto with its onQueue()
method, as in Example 16-19. You may choose to do this so you can keep other queue
items from slowing down your event broadcast; real-time WebSockets aren’t much

372 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

fun if a long-running job that’s higher in the queue keeps the events from going out
in time.
Example 16-19. Specifying the queue a job should run on

public function onQueue()

{
}

return 'websockets-for-faster-processing'

Receiving the Message

If you choose to host your own Redis WebSockets server, the Laravel docs have a
great walkthrough on how to set that up using socket.io and ioredis.

However, its much more common to use Pusher. Plans over a certain size cost
money, but there’s a generous free plan. Pusher makes it incredibly simple to set up a
simple WebSocket server, and its JavaScript SDK handles all of the authentication and
channel management with almost no work on your part. SDKs are available for iOS,
Android, and many more platforms, languages, and frameworks.

To Echo or not to Echo?

The next section covers how to write a JavaScript frontend to inter-
act with Laravel over WebSockets both with and without Echo.
It’s helpful to understand how to do this without Echo even if you
choose to use it in the end, but because much of the code here is
not necessary if you use Echo, I'd recommend reading the follow-
ing section, then the Echo section, “Laravel Echo (the JavaScript
Side)” on page 378, before you start implementing any of it;
you can decide which way you prefer and then write your code
from there.

To get started, pull in Pusher’s library, get an API key from your Pusher account, and
subscribe to any events on any channels with code like that in Example 16-20.

Example 16-20. Basic usage of Pusher JS

<script src="https://js.pusher.com/3.1/pusher.min.js"></script>

<script>
// Globally, perhaps; just a sample of how to get data in
var App = {
'userId': 5,
'pusherKey': 'your-pusher-api-key-here'
b

Broadcasting Events over WehSockets, and Laravel Echo | 373

http://bit.ly/2f5lmce
https://pusher.com/

// Locally
var pusher = new Pusher(App.pusherkKey);

var pusherChannel = pusher.subscribe('users.' + App.userld);

pusherChannel.bind('App\\Events\\UserSubscribed', (data) => {
console.log(data.user, data.plan);

s

</script>

Escaping backslashes in JavaScript

Since \ is a control character in JavaScript, you need to write \\ to
represent a backslash in your strings, which is why there are two
backslashes between each namespace segment in Example 16-20.

To publish to Pusher from Laravel, get your Pusher key, secret, and app ID from your
Pusher account dashboard, and then set them in your .emv file under the keys
PUSHER_KEY, PUSHER_SECRET, and PUSHER_APP_ID.

If you serve your app, visit a page with the JavaScript from Example 16-20 embedded
in it in one window, push a broadcast event in another window or from your termi-
nal, have a queue listener running or are using the sync driver, and all of your
authentication information is set up correctly, you should see event logs popping up
in your JavaScript window’s console in near real time.

With this power, it's now easy for you to keep your users up-to-date with what’s hap-
pening with their data any time theyre in your app. You can notify users of the
actions of other users, of long-running processes that have just finished, or of your
applications responses to external actions like incoming emails or webhooks. The
possibilities are endless.

Requirements

If you want to broadcast with Pusher or Redis, you'll need to bring
in these dependencies:

« Pusher: pusher/pusher-php-server:~2.0

o Redis: predis/predis:~1.0

Advanced Broadcasting Tools

Laravel has a few more tools to make it possible to perform more complex interac-
tions in event broadcasting. These tools, a combination of framework features and a
JavaScript library, are called Laravel Echo.

374 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

These framework features work best when you use Laravel Echo in your JavaScript
frontend (which we'll cover in “Laravel Echo (the JavaScript Side)” on page 378), but
you can still enjoy some of the benefits of Echo without using the JavaScript compo-
nents. Echo will work with both Pusher and Redis, but I'm going to use Pusher for
any examples.

Excluding the current user from broadcast events

Every connection to Pusher is assigned a unique “socket ID” identifying that socket
connection. And it’s easy to define that any given socket (user) should be excluded
from receiving a specified broadcast event.

This feature makes it possible to define that certain events should not be broadcast to
the user who fired them. Let’s say every user in a team gets notified when other users
create a task; would you want to be notified of a task you just created? No, and that’s
why we have the toOthers() method.

To implement this, there are two steps to follow. First, you need to set up your Java-
Script to send a certain POST to /broadcasting/socket when your WebSocket con-
nection is initialized. This attaches your socket_id to your Laravel session. Echo
does this for you, but you can also do it manually—take a look at the Echo source to
see how it works.

Next, youw'll want to update every request that your JavaScript makes to have an X-
Socket-ID header that contains that socket_id. Example 16-21 shows how to do that
in Vue or jQuery.

Example 16-21. Sending the socket ID along with each Ajax request in Vue or jQuery

// Run this right after you initialize echo

// Vue
Vue.http.interceptors.push((request, next) => {
request.headers['X-Socket-Id'] = Echo.socketId();

next();
b

// jQuery
$.ajaxSetup({
headers: {
'X-Socket-Id': Echo.socketId()
}
b

Once you've handled this, you can exclude any event from being broadcast to the user
who triggered it by using the broadcast() global helper instead of the event() global
helper and then chaining toOthers() after it:

Broadcasting Events over WehSockets, and Laravel Echo | 375

https://github.com/laravel/echo/

broadcast(new UserSubscribed($user, S$plan))->toOthers();

The broadcast service provider

All of the other features that Echo provides require your JavaScript to authenticate
with the server. Take a look at App\Providers\BroadcastServiceProvider, where
you’ll define how to authorize users’ access to your private and presence channels.

The two primary actions you can take are to define the middleware that will be used
on your broadcasting auth routes, and to define the authorization settings for
your channels.

If you're going to use these features, you'll need to uncomment the App\Providers
\BroadcastServiceProvider::class line in config/app.php.

And if you'll be using these features without Laravel Echo, you'll either need to man-
ually handle sending CSRF tokens along with your authentication requests, or
exclude /broadcasting/auth and /broadcasting/socket from CSRF protection by
adding them to the $except property of the VerifyCsrfToken middleware.

Binding authorization definitions for WebSocket channels. Private and presence Web-
Socket channels need to be able to ping your application to learn whether the current
user is authorized for that channel. You’ll use the Broadcast: :channel() method to
define the rules for this authorization.

Public, private, and presence channels

There are three types of channels in WebSockets: public, private,
and presence.

Public channels can be subscribed to by any user, authenticated
or not.

Private channels require the end user’s JavaScript to authenticate
against the application to prove that the user is both authenticated
and authorized to join this channel.

Presence channels are a type of private channel, but instead of
allowing for message passing, they simply keep track of which users
join and leave the channel, and make this information available to
the application’s frontend.

Broadcast::channel() takes two parameters: first, a string representing the chan-
nel(s) you want it to match, and second, a closure that defines how to authorize users
for any channel matching that string. The closure will be passed an Eloquent model
of the current user as its first parameter, and any matched * segments as additional
parameters. For example, a channel authorization definition with a string of teams.*,

376 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

when matched against the channel teams.5, will pass its closure Suser as the first
parameter and 5 as the second parameter.

If you're defining the rules for a private channel, your Broadcast: :channel() closure
will need to return a boolean: is this user authorized for this channel or not? If you're
defining the rules for a presence channel, your closure should return an array of data
you want available to the presence channel for any users that you want to show up in
the channel. Example 16-22 illustrates defining rules for both kinds of channel.

Example 16-22. Defining authorization rules for private and presence WebSocket
channels

class BroadcastServiceProvider extends ServiceProvider

{

public function boot()

{

// Define how to authenticate a private channel
Broadcast::channel('teams.*', function (Suser, $teamId) {
return Suser->team_id == $teamld;

s

// Define how to authenticate a presence channel; return any data
// you want the app to have about the user in the channel
Broadcast::channel('rooms.*', function (Suser, $roomId) {
if (Suser->rooms->contains(SroomId)) {
return [
'name' => Suser->name
1;
}
b;

You might be wondering how this information gets from your Laravel application to
your JavaScript frontend. Pusher’s JavaScript library sends a POST to your application;
by default it will hit /pusher/auth, but you can customize that (and Echo customizes
it for you) to hit Laravel’s authentication route, /broadcasting/auth:

var pusher = new Pusher(App.pusherKey, {

authEndpoint: '/broadcasting/auth'

b
Example 16-23 shows how we can tweak Example 16-20 for private and presence
channels, without Echo’s frontend components.

Broadcasting Events over WebSockets, and Laravel Echo | 377

Example 16-23. Basic usage of Pusher]S for private and presence channels

<script src="https://js.pusher.com/3.1/pusher.min.js"></script>
<script>
// Globally, perhaps; just a sample of how to get data in
var App = {
'userId': {{ auth()->user()->id }},
'pusherKey': 'your pusher key here'

}

// Locally
var pusher = new Pusher(App.pusherKey, {
authEndpoint: '/broadcasting/auth'

s

// Private channel
var privateChannel = pusher.subscribe('private-teams.1');

privateChannel.bind('App\\Events\\UserSubscribed', (data) => {
console.log(data.user, data.plan);

s

// Presence channel
var presenceChannel = pusher.subscribe('presence-rooms.5');

console. log(presenceChannel.members);
</script>

We now have the ability to send WebSocket messages to users depending on whether
they pass a given channel’s authorization rules. We can also keep track of which users
are active in a particular group or section of the site, and display relevant information
to each user about other users in the same group.

Laravel Echo (the JavaScript Side)

Laravel Echo is comprised of two pieces: the advanced framework features we just
covered, and a JavaScript package that takes advantage of those features and drasti-
cally reduces the amount of boilerplate code you need to write powerful WebSocket-
based frontends. The Echo JavaScript package makes it easy to handle authentication,
authorization, and subscribing to private and presence channels. Echo can be used
with the SDKs for either Pusher JS (for Pusher) or socket.io (for Redis).

Bringing Echo into your project

To use Echo in your project’s JavaScript, add it to package.json using npm install
- -save (be sure to bring in the appropriate Pusher or socket.io SDK as well):

npm install pusher-js --save
npm install laravel-echo --save

378 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Let’s assume you have a basic Gulp file running your app.js file through Webpack, like
in Example 16-24.

Example 16-24. Compiling app.js through Webpack
const elixir = require('laravel-elixir');

elixir(mix => {
mix.webpack('app.js');

s

Now, create a basic resources/assets/js/app.js file (Example 16-25) to bring in your
dependencies and initialize Echo.

Example 16-25. Initializing Echo in app.js
import Echo from "laravel-echo"

window.Echo = new Echo({
broadcaster: 'pusher',
key: 'your-pusher-key'
b

// Add your Echo bindings here
For CSRF protection, you'll also need to add a csrf-token <meta> tag to your
HTML template:
<meta name="csrf-token" content="{{ csrf_token() }}">
And, of course, remember to link to your compiled app.js in your HTML template:
<script src="/js/app.js"></script>

Now we're ready to get started.

Using Echo for basic event broadcasting

This is nothing different from what we've already used Pusher]S for, but
Example 16-26 is a simple code sample to show how to use Echo to listen to public
channels for basic event information.

Example 16-26. Listening to a public channel with Echo

var currentTeamId = 5; // Likely set elsewhere

Echo.channel('teams.' + currentTeamId)
.listen('UserSubscribed', (data) => {

console.log(data);

s

Broadcasting Events over WehSockets, and Laravel Echo | 379

Echo provides a few methods for subscribing to various types of channels; channel()
will subscribe you to a public channel. Note that when you listen to an event with
Echo, you can ignore the full event namespace and just listen for the unique name of
this event. And now we now have access to the public data that’s passed along with
our event.

We can also chain listen() handlers, as in Example 16-27.

Example 16-27. Chaining event listeners in Echo

Echo.channel('teams.' + currentTeamId)
.listen('UserSubscribed', (data) => {
console.log(data);

H
.listen('UserCanceled', (data) => {

console.log(data);

s

Remember to compile and include!

Did you try these code samples and not see anything change in
your browser? Make sure to run gulp (if youre running it once) or
gulp watch (to run a listener) to compile your code. And, if you
haven’t yet, be sure to actually include app.js in your template
somewhere.

Private channels and basic authentication

Echo also has a method for subscribing to private channels: private(). It works the
same as channel(), but it requires you to have set up channel authorization defini-
tions in BroadcastServiceProvider, like we covered earlier. Additionally, unlike
with the SDKs, you don’t need to put private- in front of your channel name.

Example 16-28 shows what it looks like to listen to a private channel named private-
teams.5.

Example 16-28. Listening to a private channel with Echo

var currentTeamld = 5; // Likely set elsewhere

Echo.private('teams.' + currentTeamId)
.listen('UserSubscribed', (data) => {

console.log(data);

s

380 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Presence channels

Echo makes it much simpler to join and listen to events in presence channels. This
time youll want to use the join() method to bind to this channel, as in
Example 16-29.

Example 16-29. Joining a presence of channel
var currentTeamld = 5; // Likely set elsewhere

Echo.join('teams.' + currentTeamId)
.here((members) => {
console.log(members);

s

join() subscribes to the presence channel, and here() allows you to define the
behavior when the user joins and also when any other users join or leave the presence
channel.

You can think of a presence channel like a “who’s online” sidebar in a chat room.
When you first join a presence channel, your here() callback will be called and pro-
vided a list of all the members at that time. And any time any members join or leave,
that callback will be called again with the updated list. There’s no messaging happen-
ing here, but you can play sounds, update the on-page list of members, or do what-
ever else you want in response to these actions.

There are also specific methods for individual events, which you can use individually
or chained (see Example 16-30).

Example 16-30. Listening for specific presence events
var currentTeamld = 5; // Likely set elsewhere

Echo.join('teams.' + currentTeamId)

.then((members) => {
// runs when you join
console.table(members);

b

.joining((joiningMember, members) => {
// runs when another member joins
console.table(joiningMember);

b

.leaving((leavingMember, members) => {
// runs when another member leaves
console.table(leavingMember);

s

Broadcasting Events over WebSockets, and Laravel Echo | 381

Excluding the current user

We covered this previously in the chapter, but if you want to exclude the current user,
use the broadcast() global helper instead of the event() global helper and then
chain the toOthers() method after your broadcast call.

As you can see, the Echo JavaScript library doesn't do anything you couldn’t do on
your own—but it makes a lot of common tasks much simpler, and provides a cleaner,
more expressive syntax for common WebSocket tasks.

Subscribing to notifications with Echo

Laravel’s notifications come with a broadcast driver out of the box that pushes notifi-
cations out as broadcast events. You can subscribe to these notifications with Echo
using Echo.notification, as in Example 16-31.

Example 16-31. Subscribing to a notification with Echo

Echo.private('App.User.' + userlId)
.notification((notification) => {
console.log(notification.type);

s

Scheduler

If you've ever written a cron job before, you likely already wish for a better tool. Not
only is the syntax onerous and frustratingly difficult to remember, but it’s one signifi-
cant aspect of your application that can’t be stored in version control.

Laravel’s scheduler makes handling scheduled tasks simple. You'll write your sched-
uled tasks in code, and then point one cron job at your app: once per minute, run php
artisan schedule:run. Every time this Artisan command is run, Laravel checks
your schedule definitions to find out if any scheduled tasks should run.

Here’s the cron job to define that command:
* * * * * php [home/myapp.com/artisan schedule:run >> /dev/null 2>&1

There are many task types you can schedule and many time frames you can use to
schedule them.

app/Console/Kernel.php has a method named $schedule, which is where you’ll define
any tasks youd like to schedule.

382 | (Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Available Task Types

First, lets take a look at the simplest option: a closure, run every minute
(Example 16-32). That means that, every time the cron job hits the schedule:run
command, it will call this closure.

Example 16-32. Scheduling a closure to run once every minute

// app/Consoles/Kernel.php
public function schedule($schedule)

{
$schedule->call(function () {
dispatch(new CalculateTotals);
})->everyMinute();
}

There are two other types of tasks you can schedule: Artisan and shell commands.

You can schedule Artisan commands by passing their syntax exactly as you would call
them from the command line:

$schedule->command('scores:tally --reset-cache')->everyMinute();
And you can run any shell commands that you could run with PHP’s exec() method:

$schedule->exec(' /home/myapp.com/bin/build.sh')->everyMinute();

Available Time Frames

The beauty of the scheduler isn’t just that you can define your tasks in code; it’s that
you can schedule them in code, too. Laravel keeps track of time passing and evaluates
whether it’s time for any given task to run. That’s easy with everyMinute() because
the answer is always simple: run the task. But Laravel keeps the rest simple for you,
too, even for the most complex of requests.

Let’s take a look at your options by starting with a monstrous definition that’s simple
in Laravel:

$schedule->call(function () {
// Runs once a week on Sunday at 23:50
1) ->weekly()->sundays()->at('23:50");
Notice that we can chain times together: we can define frequency and specify the day
of the week and the time, and of course we can do so much more.

Scheduler | 383

Table 16-1 shows a list of potential date/time modifiers for use when scheduling a job.

Table 16-1. Date/time modifiers for use with the scheduler

Command Description

->timezone('America/Detroit') Set the time zone for schedules

->cron('* ko x x ok x') Define the schedule using the traditional cron notation
->everyMinute() Run every minute

->everyFiveMinutes() Run every 5 minutes

->everyTenMinutes() Run every 10 minutes
->everyThirtyMinutes() Run every 30 minutes

->hourly() Run every hour

->daily() Run every day at midnight

->datilyAt('14:00") Run every day at 14:00

->twiceDaily(1, 14) Run every day at 1:00 and 14:00

->weekly() Run every week (midnight on Sunday)
->weeklyOn(5, '10:00') Run every week on Friday at 10:00

->monthly() Run every month (midnight on the 1st)
->monthlyOn(15, '23:00') Run every month on the 15th at 23:00
->quarterly() Run every quarter (midnight on the 1st of January, April, July, and October)
->yearly() Run every year (midnight on the 1st of January)
->when(closure) Limit the task to when closure returns true
->skip(closure) Limit the task to when closure returns false
->between('8:00', '12:00') Limit the task to between the given times
->unlessBetween('8:00', Limit the task to any time except between the given times
'12:00")

->weekdays() Limit to weekdays

->sundays() Limit to Sundays

->mondays() Limit to Mondays

->tuesdays() Limit to Tuesdays

->wednesdays() Limit to Wednesdays

->thursdays() Limit to Thursdays

->fridays() Limit to Fridays

->saturdays() Limit to Saturdays

Most of these can be chained one after another, but of course, any combinations that
don’t make sense chained can’t be chained.

Example 16-33 shows a few combinations you could consider.

384 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Example 16-33. Some sample scheduled events

// Both run weekly on Sunday at 23:50
$schedule->command('do:thing')->weeklyOn(0, '23:50');
$schedule->command('do:thing')->weekly()->sundays()->at('23:50"');

// Run once per hour, weekdays, 8am-5pm

$schedule->command('do:thing')->weekdays()->hourly()->when(function () {
return date('H') >= 8 && date('H') <= 17;

b

// Run once per hour, weekdays, 8am-5pm using new Laravel 5.3 "between"
$schedule->command('do:thing')->weekdays()->hourly()->between('8:00"', '17:00");

$schedule->command('do:thing')->everyThirtyMinutes()->skip(function () {
return app('SkipDetector')->shouldSkip();
H;

Blocking and Overlap

If you want to avoid your tasks overlapping each other—for example, if you have a
task running every minute that may sometimes take longer than a minute to run—
end the schedule chain with the withoutOverlapping() method. This method skips a
task if the previous instance of that task is still running:

$schedule->command('do:thing')->everyMinute()->withoutOverlapping();

Handling Task Output

Sometimes the output from your scheduled task is important, whether for logging,
notifications, or just ensuring that the task ran.

If you want to write the returned output of a task to a file, use sendOutputTo():
$schedule->command('do:thing')->daily()->sendOutputTo($filePath);

If you want to append it to a file instead, use appendOutputTo():
$schedule->command('do:thing')->daily()->appendOutputTo(S$filePath);

And if you want to email the output to a designated recipient, write it to a file first
and then add emailOutputTo():

$schedule->command('do:thing')
->daily()
->sendOutputTo($filePath)
->emailOutputTo('me@myapp.com');

Make sure that your email settings are configured correctly in Laravel’s basic email
configuration.

Scheduler | 385

Closure scheduled events can’t send output

The sendOutputTo(), appendOutputTo(), and emailOutputTo()
methods only work for command scheduled tasks. You can’t use
them for closures, unfortunately.

You may also want to send some output to ensure that your tasks ran correctly. There
are a few services that provide this sort of uptime monitoring, most significantly
Laravel Envoyer (a zero-downtime deployment service that also provides cron
uptime monitoring) and Dead Man’s Snitch, a tool designed purely for monitoring
cron job uptime.

These services don't expect something to be emailed to them, but rather expect an
HTTP “ping,” so Laravel makes that easy with pingBefore() and thenPing():

$schedule->command('do:thing')
->daily()
->pingBefore($beforeurl)
->thenPing($afterurl);

If you want to use the ping features, you'll need to pull in Guzzle using Composer:
"guzzlehttp/quzzle":"~5.3|~6.0".

Task Hooks

Speaking of running something before and after your task, there are hooks for that,
with before() and after():

$schedule->command('do_thing')
->daily()
->before(function () {
// Prepare

b
->after(function () {
// Cleanup

s

Testing

Testing queued jobs (or anything else in the queue) is easy. In phpunit.xml, which is
the configuration file for your tests, the QUEUE_DRIVER environment variable is set to
sync by default. That means your tests will run your jobs or other queued tasks syn-
chronously, directly in your code, without relying on a queue system of any sort. You
can test them just like any other code.

However, if youd just like to check that a job was fired, you can do that with the
expectsJobs() method, as in Example 16-34.

386 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

https://envoyer.io
https://deadmanssnitch.com/

Example 16-34. Asserting that a job of the specified class was dispatched
public function test_changing_number_of_subscriptions_crunches_reports()
{

$this->expectsJobs(App\Jobs\CrunchReports::class);

}

Or, in Laravel 5.3 and later, you can assert against the specific job itself, as in
Example 16-35.

Example 16-35. Using a closure to verify that a dispatched job meets given criteria

use Illuminate\
public function test_changing_subscriptions_triggers_crunch_job()

{
Bus::assertDispatched(CrunchReports::class, function (Se) {
return $e->subscriptions->contains(5);
H;
// Also can use assertNotDispatched
}

To test that an event fired, you have three options. First, you can just test that the
behavior you expected happened, without concerning yourself with the event itself.

Second, you can explicitly assert that the event fired, as in Example 16-36. This works
in Laravel 5.2.

Example 16-36. Asserting that an event of the specified class was fired
public function test_usersubscribed_event_fires()
{

$this->expectsEvents(App\Events\UserSubscribed::class);

}

E Finally, you can run a test against the event that was fired, as in Example 16-37. This
is new in Laravel 5.3.

Example 16-37. Using a closure to verify that a fired event meets given criteria

public function test_usersubscribed_event_fires()

{

Testing | 387

Event::assertFired(UserSubscribed::class, function ($e) {
return $e->user->email = 'user-who-subscribed@mail.com';

s

// Also can use assertNotFired()

}

Another common scenario is that youre testing code that incidentally fires events,
and you want to disable the event listeners during that test. You can disable the event
system with the withoutEvents() method, as in Example 16-38.

Example 16-38. Disabling event listeners during a test

public function test_something_subscription_related()

{
Sthis->withoutEvents();

}

TL;DR

Queues allow you to separate chunks of your application’s code from the synchronous
flow of user interactions out to a list of commands to be processed by a “queue
worker” This allows your users to resume interactions with your application while
slower processes are handled asychronously in the background.

Jobs are classes that are structured with the intention of encapsulating a chunk of
application behavior so that it can be pushed onto a queue.

Laravel’s event system follows the pub/sub or observer pattern, allowing you to send
out notifications of an event from one part of your application, and elsewhere bind
listeners to those notifications to define what behavior should happen in response to
them. Using WebSockets, events can also be broadcast to frontend clients.

Laravel’s scheduler simplifies scheduling tasks. Point an every-minute cron job to
php artisan schedule:run and then schedule your tasks with even the most com-
plex of time requirements using the scheduler, and Laravel will handle all the timings
for you.

388 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

CHAPTER 17
Helpers and Collections

We've already covered many global functions throughout the book: little helpers that
make it easier to perform common tasks, like dispatch() for Jobs, event()
for Events, app() for dependency resolution, and many more. We also talked a bit
about Laravel’s collections, or arrays on steroids, in Chapter 8.

In this chapter we'll cover some of the more common and powerful helpers and some
of the basics of programming with collections.

Helpers

You can find a full list of the helpers Laravel offers in the helpers docs, but we're going
to cover a few of the most useful functions here.

Arrays

PHP’s native array manipulation functions give you a lot of power, but sometimes
there are common manipulations we want to make that require unwieldy loops
and logic checks. Laravel’s array helpers make a few common array manipulations
much simpler:

array_first(sarray, Sclosure, Sdefault = null)
Returns the first array value that passes a test, defined in a closure. You can
optionally set the default value as the third parameter:

$people = [
[
'email' => 'm@me.com',
'name' => 'Malcolm Me'
1,
[

389

https://laravel.com/docs/helpers

'email' => 'j@jo.com',
'name' => 'James Jo'

1;

Svalue = array_first($people, function ($Skey, Sperson) {
return $person['email'] == 'j@jo.com';

s

array_get(sarray, Skey, Sdefault = null)

Makes it easy to get values out of an array, with two added benefits: it won't
throw an error if you ask for a key that doesn’t exist (and you can provide
defaults with the third parameter), and you can use dot notation to traverse nes-
ted arrays. For example:

Sarray = ['owner' => ['address' => ['linel' => '123 Main St.']]];

array_get($array, 'owner.address.linel', 'No address');
array_get($array, 'owner.address.line2');

Slinel
$line2

array_has($array, Skey)

Makes it easy to check whether an array has a particular value set using dot nota-
tion for traversing nested arrays:

$array = ['owner' => ['address' => ['linel' => '123 Main St.']11;
if (array_has($array, 'owner.address.line2')) {

// Do stuff
}

array_pluck(Sarray, Skey, SindexKey)

Returns an array of the values corresponding to the provided key:
Sarray = [

['owner' => ['id' => 4, 'name' => 'Tricia'l]],

['owner' => ['id' => 7, 'name' => 'Kimberly']],

I;
Sarray = array_pluck($Sarray, 'owner.name');
// Returns ['Tricia', 'Kimberly'];

If you want the returned array to be keyed by another value from the source
array, you can pass that value’s dot-notated reference as the third parameter:

$array = array_pluck($Sarray, 'owner.name', 'owner.id');

// Returns [4 => 'Tricia', 7 => 'Kimberly'];

390

| Chapter 17: Helpers and Collections

Strings
Just like with arrays, there are some string manipulations and checks that are possible

with native PHP functions, but can be cumbersome. Laravel’s helpers make a few
common string operations faster and simpler:

e($string)
An alias to htmlentities(); prepares a (often user-provided) string for safe echo-
ing on an HTML page. For example:

e('<script>do something nefarious</script>');

// Returns <script>do something nefarious</scripté>

starts_with(Shaystack, S$needle), ends_with(Shaystack, Sneedle), and
str_contains($haystack, Sneedle)
Return a boolean of whether the provided “haystack” string starts with, ends
with, or contains the provided “needle” string:
if (starts_with($Surl, 'https')) {

// Do something
}

if (ends_with($abstract, '...")) {
// Do something
}

if (str_contains($description, '1337 h4xor')) {
// Run away
}

str_limit(Sstring, SnumCharacters, SconcatenationString = '...')
Limits a string to the provided number of characters. If the string is less than
the limit, just returns the string; if it’s greater, trims to the number of characters
provided and then appends either ... or the provided concatenation string. For
example:

Sabstract = str_limit($loremIpsum, 30);
// Returns "Lorem ipsum dolor sit amet, co..."
Sabstract = str_limit($loremIpsum, 30, "…");

// Returns "Lorem ipsum dolor sit amet, co…"

Helpers | 391

str_is($pattern, Sstring)
Returns a boolean of whether or not a given string matches a given pattern.
The pattern can be a regex pattern, or you can use asterisks to indicate wildcard

positions:

str_is('*.dev', 'myapp.dev'); // true
str_is('*.dev', 'myapp.dev.co.uk'); // false
str_is('*dev*', 'myapp.dev'); // true

str_is('*myapp*', 'www.myapp.dev'); // true
str_is('my*app', 'myfantasticapp'); // true
str_is('my*app', 'myapp'); // true

How to pass a regex to str_is()

\Support\Str::is:

public function is($pattern, S$value)

{
if (Spattern == Svalue) return true;
Spattern = preg_quote($pattern, '#');
Spattern = str_replace('*', '.*', $Spattern);
return (bool) preg_match(
"#2' . Spattern . '\z#u',
Svalue
);
}

str_random(Slength)

If you're curious about what regex patterns are acceptable to pass to
str_is(), check out the function definition here (shortened for
space) to see how it works. Note that it’s an alias of Illuminate

Returns a random string of alphanumeric mixed-case characters of the length

specified:

Shash = str_random(64);

// Sample: J40uNWAvVY6OWE4BPEWxXuU7BZFQEMXEHMGTLMQNCjOThMGIK705Kfgptybulwspmh

str_slug($string, $separator = '-')

Returns a URL-friendly slug from a string—often used for creating a URL seg-

ment for a name or title:

str_slug('How to Win Friends and Influence People');

// Returns 'how-to-win-friends-and-influence-people’

392 | Chapter 17: Helpers and Collections

Application Paths

When you're dealing with the filesystem, it can often be tedious to make links to cer-
tain directories for getting and saving files. These helpers give you quick access to
find the fully qualified paths to some of the most important directories in your app.

Note that each of these can be called with no parameters, but if a parameter is passed,
it will be appended to the normal directory string and returned as a whole:

app_path(sappend = ')
Returns the path for the app directory:

app_path();

// Returns /home/forge/myapp.com/app

base_path(Sappend = '")
Returns the path for the root directory of your app:

base_path();

// Returns /home/forge/myapp.com

config_path(Sappend = '')
Returns the path for configuration files in your app:

config_path();

// Returns /home/forge/myapp.com/config

database_path(Sappend = '')
Returns the path for database files in your app:

database_path();
// Returns /home/forge/myapp.com/database

storage_path(Sappend = '')
Returns the path for the storage directory in your app:

storage_path();

// Returns /home/forge/myapp.com/storage

Helpers | 393

URLs

Some frontend file paths are consistent but at times annoying to type—for example,
paths to assets—and it’s helpful to have convenient shortcuts to them, which we'll
cover here. But some can actually vary as route definitions move or new files are ver-
sioned with Elixir, so some of these helpers are vital in making sure all of your links
and assets work correctly:

action('Controller@method’, Sparams = [], Sabsolute = true)

Assuming a controller method has a single URL mapped to it, returns the correct
URL given a controller and method name pair (separated by @):

See all People

// Returns See all People

If the controller method requires parameters, you can pass them in as the second
parameter (as an array, if there’s more than one required parameter). You can
key them if you want for clarity, but what matters is just that theyre in the right
order:

 3] }}">See Person #3

// or
See Person #3

// Returns See Person #3

If you pass false to the third parameter, your links will generate as relative
(/people/3) instead of absolute (http://myapp.com/people/3).

route(SrouteName, Sparams = [], Sabsolute = true)

If a route has a name (using as in the route definition), returns the URL for
that route:

 3]) }}">See Person #3

// or

See Person #3

If the route definition requires parameters, you can pass them in as the second
parameter (as an array if more than one parameter is required). Again, you can
key them if you want for clarity, but what matters is just that they’re in the right
order:

 3]) }}">See Person #3

// or
See Person #3

// Returns See Person #3

394

| Chapter 17: Helpers and Collections

If you pass false to the third parameter, your links will generate as relative
instead of absolute.

url($string) and secure_url(Sstring)
Given any path string, converts to a fully qualified URL. secure_url() is the
same as url() but forces HTTPS.

url('people/3');

// Returns http://myapp.com/people/3
If no parameters are passed, this instead gives an instance of Illuminate
\Routing\UrlGenerator, which makes method chaining possible:

url()->current();
// Returns http://myapp.com/abc

url()->full();
// Returns http://myapp.com/abc?order=reverse

url()->previous();
// Returns http://myapp.comn/login

// And many more methods available on the UrlGenerator...

elixir(SfilePath)
If assets are versioned with Elixir’s versioning system, given the nonversioned
path name, returns the fully qualified URL for the versioned file:

<link rel="stylesheet" href="{{ elixir('css/app.css') }}">

// Returns something like /build/css/app-eb555e38.css

Misc
There are a few other global helpers that I'd recommend getting familiar with. Of

course, you should check out the whole list, but the ones mentioned here are defi-
nitely worth taking a look at:

abort(Scode, Smessage, S$Sheaders), abort_unless(Sboolean, S$Scode, Smessage,
Sheaders), and abort_if($boolean, Scode, Smessage, Sheaders)
Throw HTTP exceptions. abort() throws the exception defined,
abort_unless() throws it if the first parameter is false, and abort_if() throws
it if the first parameter is true:

public function controllerMethod(Request $request)
{
abort (403, 'You shall not pass');
abort_unless($request->has('magicToken'), 403);

Helpers | 395

https://laravel.com/docs/helpers

abort_1if($request->user()->isBanned, 403);

}

auth()
Returns an instance of the Laravel authenticator. Like the Auth facade, you can

use this to get the current user, to check for login state, and more:
Suser = auth()->user();

if (auth()->check()) {
// Do something

}

back()
Generates a “redirect back” response, sending the user to the previous location:

Route::get('post', function () {

if (Scondition) {
return back();
}
b

collect(Sarray)
Takes an array and returns the same data, converted to a collection:

Scollection = collect(['Rachel', 'Hototo']);

We'll cover collections in just a bit.

config(Skey)
Returns the value for any dot-notated configuration item:

$defaultDbConnection = config('database.default');

csrf_field() and csrf_token()
Return a full HTML hidden input (csrf_field()) or just the appropriate token
value (csrf_token()) for adding CSRF verification to your form submission:

<form>
{{ csrf_field() }}
</form>

/] or

<form>
<input type="hidden" name="_token" value="{{ csrf_token() }}">

</form>

396 | Chapter 17: Helpers and Collections

dd(Svariable...)

Short for “dump and die,” runs var_dump() on all provided parameters and then

exit() to quit the application (this is used for debugging):

dd(Svarl, Svar2, Sstate); // Why is this not working???

env(Skey, Sdefault = null)
Returns the environment variable for the given key:

Skey = env('API_KEY', '');

Using env() outside of config files

Certain features in Laravel, including some caching and optimiza-
tion features, aren’t available if you use env() calls anywhere out-
side of config files.

The best way to pull in environment variables is to set up config
items for anything you want to be environment-specific. Have
those config items read the environment variables, and then refer-
ence the config variables anywhere within your app:
// config/services.php
return [
'bugsnag' => [
'key' => env('BUGSNAG_API_KEY')
]
15

// in controller, or whatever

Sbugsnag = new Bugsnag(config('services.bugsnag.key'));

dispatch(sjob)
Dispatches a job:

dispatch(new EmailAdminAboutNewUser(Suser));

event(Sevent)
Fires an event:

event(new ContactAdded($contact));

factory(SentityClass)
Returns an instance of the factory builder for the given class:

$contact = factory(App\Contact::class)->make();

Helpers

397

old(Skey, Sdefault = null)
Returns the old value (from the last user form submission) for this form key, if
it exists:

<input name="name" value="{{ old('value', 'Your name here') }}"

redirect(Spath)
Returns a redirect response to the given path:

Route::get('post', function () {

return redirect('home');

s

Without parameters, generates an instance of the Illuminate\Routing\Redirec
tor class.

response(Sbody, S$Sstatus, Sheaders)
If passed with parameters, returns a prebuilt instance of Response. If passed with
no parameters, returns an instance of the Response factory:

return response('0OK', 200, ['X-Header-Greatness' => 'Super great']);

return response()->json(['status' => 'success'], 200);

view(SviewPath)
Returns a view instance:

Route::get('home', function () {
return view('home'); // Gets /resources/views/home.blade.php

s

Collections

Collections are one of the most powerful and yet underappreciated tools Laravel
provides. We covered them a bit in “Eloquent Collections” on page 174, but here’s a
quick recap.

Collections are essentially arrays with superpowers. The array-traversing methods
you normally have to pass arrays into (array_walk(), array_map(), array_reduce(),
etc.), all of which have confusingly inconsistent method signatures, are available as
consistent, clean, chainable methods on every collection. You can get a taste of func-
tional programming and map, reduce, and filter your way to cleaner code.

We'll cover some of the basics of Laravel’s collections and collection pipeline pro-
gramming here, but for a much deeper overview, check out Adam Wathans book
Refactoring to Collections (Gumroad).

398 | Chapter 17: Helpers and Collections

https://adamwathan.me/refactoring-to-collections

The Basics of Collections

Collections are not a new idea within Laravel. Many languages make collection-style
programming available on arrays out of the box, but with PHP were not quite

so lucky.

Using PHP’s array*() functions, we can take the monstrosity shown in
Example 17-1, and turn it into the slightly less monstrous monstrosity shown in

Example 17-2.

Example 17-1. A common, but ugly, foreach loop
Susers = [...];
Sadmins = [];
foreach (Susers as S$user) {
if (Suser['status'] == 'admin') {

Suser['name'] = Suser['first'] . ' ' . Suser['last'];
$admins[] = S$user;

}

return $admins;

Example 17-2. Refactoring the foreach loop with native PHP functions
Susers = [...];

return array_map(function (Suser) {
Suser['name'] = Suser['first'] . ' ' . Suser['last'];
return S$user;

}, array_filter(Susers, function (Suser) {
return Suser['status'] == 'admin';

M)

Here, we've gotten rid of a temporary variable ($admins) and converted one confus-

ing foreach loop into two distinct actions: map and filter.

The problem is, PHP’s array manipulation functions are awful and confusing. Just
look at this example; array_map() takes the closure first and the array second, but
array_filter() takes the array first and the closure second. In addition, if we added
any complexity to this, wed have functions wrapping functions wrapping functions.

It’s a mess.

Collections

399

Laravel’s collections take the power of PHP’s array manipulation methods and give
them a clean, fluent syntax—and they add many methods that don't even exist in
PHP’s array manipulation toolbox. Now, using the collect() helper method that
turns an array into a Laravel collection, we can do what’s shown in Example 17-3:
Example 17-3. Refactoring the foreach loop with Laravel’s collections

Susers = collect([...]);

return Susers->filter(function (Suser) {

return Suser['status'] == 'admin';

})->map(function (Suser) {
Suser['name'] = Suser['first'] . ' ' . Suser['last'];
return $Suser;

s

This isn’t the most extreme of examples. There are plenty where the reduction in lines
of code and the increased simplicity would make an even stronger case. But this right
here is so common.

Look at the original example and how muddy it is. It’s not entirely clear until you
understand the entire code sample what any given piece is there for.

The biggest benefit collections provide, over anything else, is breaking the actions
you’re taking to manipulate an array into simple, discrete, understandable tasks. You
can now do something like this:

Susers = [...]

ScountAdmins = collect($users)->filter(function (Suser) {

return Suser['status'] == 'admin'
1} ->count();

Or something like this:

Susers = [...];

SgreenTeamPoints = collect(Susers)->filter(function (Suser) {
return $user->team == 'green';

})->sum('points');

A Few Methods

There’s much more you can do than what we've covered here. Take a look at the Lara-
vel Collection docs to learn more about all the methods you can use, but to get you
started, here are just a few of the core methods:

all() and toArray()
If youd like to convert your collection to an array, you can do so with either
all() or toArray(). toArray() flattens not just the collection, but also any Elo-
quent objects underneath it, to arrays. all() only converts the collection to an

400 | Chapter17:Helpers and Collections

https://laravel.com/docs/collections
https://laravel.com/docs/collections

array; any Eloquent objects contained within the collection will be preserved as
Eloquent objects. Here are a few examples:

Susers = User::all();
Susers->toArray();

/* Returns

[

['id' => '1', 'name' => 'Agouhanna'],

]
*/

Susers->all();

/* Returns

[

Eloquent Object { id : 1, name: 'Agouhanna’ },

1
*/
filter() and reject()
When you want to get a subset of your original collection by checking each item
against a closure, you'll use filter() (which keeps an item if the closure returns
true) or reject() (which keeps an item if the closure returns false):

Susers = collect([...]);
Sadmins = Susers->filter(function (Suser) {
return $user->isAdmin;

s

$paidUsers = Suser->reject(function (Suser) {
return $user->isTrial;

s

where()
where() makes it easy to provide a subset of your original collection where a

given key is equal to a given value. Anything you can do with where() you can
also do with filter(), but it’s a shortcut for a common scenario:
Susers = collect([...]);
Sadmins = Susers->where('role', 'admin');

first() and last()
If you want just a single item from your collection, you can use first() to pull
from the beginning of the list or last() to pull from the end.

Collections | 401

If you call first() or last() with no parameters, they’ll just give you the first or last
item in the collection. But if you pass either a closure, they’ll instead give you the first
or last item in the collection that returns true when passed to that closure.

Sometimes you’ll do this because you want the actual first or last item. But sometimes
it’s the easiest way to get one item even if you only expect there to be one:

Susers = collect([...]);
Sowner = S$users->first(function (Suser) {
return Suser->isOwner;

s

S$firstUser = Susers->first();
S$lastUser = Susers->last();

You can also pass a second parameter to each method, which is the default value and
will be provided as a fallback if the closure doesn’t provide any results.

each()

If youd like to do something with each item of a collection, but it doesn’t include
modifying the items or the collection itself, you can use each():

Susers = collect([...]);
Susers->each(function (Suser) {
dispatch(new EmailUserAThing(Suser));

s

map()

If youd like to iterate over all the items in a collection, make changes to them,
and return a new collection with all of your changes, you’ll want to use map():

Susers = collect([...]);
Susers = Susers->map(function (Suser) {
return [
'name' => Suser['first'] . ' ' . Suser['last'],
'email' => Suser['email']
1;
H;

reduce()

If youd like to get a single result from your collection, like a count or a string,
you'll probably want to use reduce(). You can define an initial value for the
“carry, and a closure that accepts the current state of the “carry” and then each
item as parameters:

Susers = collect([...]);

$points = Susers->reduce(function ($carry, Suser) {
return $carry + $Suser['points']
}, 0); // Start with a carry of @

402

| Chapter 17: Helpers and Collections

pluck()
If you want to pull out just the values for a given key under each item in a collec-

tion, you can use pluck() (formerly lists()):

Susers = collect([...]);

Semails = Susers->pluck('email')->toArray();

chunk() and take()
chunk() makes it easy to split your collection into groups of a predefined size,
and take() pulls just the provided number of items:

Susers = collect([...]);
$rowsOfUsers = $Susers->chunk(3); // Separates into groups of 3
StopThree = Susers->take(3); // Pulls the first 3

groupBy()
If you want to group all of the items in your collection by the value of one of their

properties, you can use groupBy():

Susers = collect([...]);
SusersByRole = $users->groupBy('role');

/* Returns:
[
'member’' => [...],
'admin' => [...]
1
*/
You can also pass a closure, and whatever you return from the closure will be
what’s used to group the records:

Sheroes = collect([...]);

SheroesByAbilityType = Sheroes->groupBy(function ($hero) {
if (Shero->canFly() && $hero->isInvulnerable()) {
return 'Kryptonian';

}

if (Shero->bitByARadioactiveSpider()) {
return 'Spidermanesque’;

}

if (Shero->color === 'green' && S$hero->likesSmashing()) {
return 'Hulk-like';

}

Collections | 403

return 'Generic';

s

reverse() and shuffle()

reverse() reverses the order of the items in your collection, and shuffle() ran-
domizes them:

Snumbers = collect([1, 2, 3]);

Snumbers->reverse()->toArray(); // [3, 2, 1]
$numbers->shuffle()->toArray(); // [2, 3, 1]

sort(), sortBy(), and sortByDesc()

If your items are simple strings or integers, you can use sort() to sort them:
$sortedNumbers = collect([1, 7, 6, 4])->sort()->toArray(); // [1, 4, 6, 7]

If they’re more complex, you can pass a string (representing the property) or a
closure to sortBy() or sortByDesc() to define your sorting behavior:

Susers = collect([...]);

// Sort an array of users by their 'email' property
Susers->sortBy('email');

// Sort an array of users by their 'email' property
Susers->sortBy(function (Suser, Skey) {
return Suser['email'];

s

count() and isEmpty()

You can see how many items there are in your collection using count() or
isEmpty():

$numbers = collect([1, 2, 3]);

$numbers->count(); // 3
$numbers->isEmpty(); // false

avg() and sum()

If youre working with a collection of numbers, avg() and sum() do what their
method names say, and don't require any parameters:

collect([1, 2, 3])->sum(); // 6
collect([1, 2, 3])->avg(); // 2

But if youre working with arrays, you can pass the key of the property youd like
to pull from each array to operate on:

Susers = collect([...]);

$sumPoints = $Susers->sum('points');
$avgPoints = Susers->avg('points');

404

| Chapter 17: Helpers and Collections

Using collections outside of Laravel

Have you fallen in love with collections, and do you want to use
them on your non-Laravel projects? With Taylor’s blessing, I split
out just the collections functionality from Laravel into a separate
project called Collect, and developers at my company keep it up-to-
date with Laravel’s releases.

Just use the composer require tightenco/collect command and
you'll have the I1luminate\Support\Collection class ready to use
in your code—along with the collect() helper.

TL;DR

Laravel provides a suite of global helper functions that make it simpler to do all sorts
of tasks. They make it easier to manipulate and inspect arrays and strings, they make
it easier to generate paths and URLs, and they provide simple access to some consis-
tent and vital functionality.

Laravel’s collections are powerful tools that bring the possibility of collection pipe-
lines to PHP.

TLDR | 405

http://bit.ly/2f1It7n

Accessor

A method defined on an Eloquent model
that customizes how a given property will
be returned. Accessors make it possible to
define that getting a given property from a
model will return a different (or, more
likely, differently formatted) value than
what is stored in the database for that

property.

ActiveRecord

A common database ORM pattern, and
also the pattern that Laravel’s Eloquent
uses. In ActiveRecord the same model
class defines both how to retrieve and per-
sist database records and how to represent
them. Additionally, each database record
is represented by a single entity in the
application, and each entity in the applica-
tion is mapped to a single database record.

Application test

Often called acceptance or functional
tests, application tests test the entire
behavior of the application, usually at an
outer boundary, by employing something
like a DOM crawler—which is exactly
what Laravel’s application test suite offers.

Argument (Artisan)

Arguments are parameters that can be
passed to Artisan console commands.
Arguments aren’t prefaced with - - or fol-
lowed by =, but instead just accept a single
value.

Glossary

Artisan

The tool that makes it possible to interact
with Laravel applications from the com-
mand line.

Assertion

In testing, an assertion is the core of the
test: you are asserting that something
should be equal to (or less than or greater
than) something else, or that it should
have a given count, or whatever else you
like. Assertions are the things that can
either pass or fail.

Authentication

Correctly identifying oneself as a mem-
ber/user of an application is the act of
authentication. Authentication doesn’t
define what you may do, but simply who
you are (or aren't).

Authorization

Assuming you've either succeeded or
failed at authenticating yourself, authori-
zation defines what youre allowed to do
given your particular identification.
Authorization is about access and control.

Autowiring

When a dependency injection container
will inject an instance of a resolvable class
without a developer having explicitly
taught it how to resolve that class, that’s
called autowiring. With a container that
doesn’t have autowiring, you can’t even
inject a plain PHP object with no depen-

407

beanstalkd

dencies until you have explicitly bound it
to the container. With autowiring, you
only have to explicitly bind something to
the container if its dependencies are too
complex or vague for the container to fig-
ure out on its own.

beanstalkd
Beanstalk is a work queue. It's simple and
excels at running multiple asynchronous
tasks—which makes it a common driver
for Laravel's queues. beanstalkd is its dae-
mon.

Blade
Laravel’s templating engine.

Carbon
A PHP package that makes working with
dates much easier and more expressive.

Cashier
A Laravel package that makes billing with
Stripe or Braintree, especially in subscrip-
tion contexts, easier and more consistent
and powerful.

Closure
Closures are PHP’s version of anonymous
functions. A closure is a function that you
can pass around as an object, assign to a
variable, pass as a parameter to other
functions and methods, or even serialize.

Codelgniter
An older PHP framework that Laravel was
inspired by.

Collection
The name of a development pattern and
also Laravel’s tool that implements it. Like
arrays on steroids, collections provide
map, reduce, filter, and many more pow-
erful operations that PHP’s native arrays
don’t.

Command
The name for a custom Artisan console
task.

Composer
PHP’s dependency manager. Like Ruby
Gems or NPM.

Container

Somewhat of a catchall word, in Laravel
“container” refers to the application con-
tainer that’s responsible for dependency
injection. Accessible via app() and also
responsible for resolving calls to control-
lers, events, jobs, and commands, the con-
tainer is the glue that holds each Laravel
app together.

Contract
Another name for an interface.

Controller
A class that is responsible for routing user
requests through to the application’s serv-
ices and data, and returning some form of
useful response back to the user.

CSRF (cross-site request forgery)

A malicious attack where an external site
makes requests against your application
by hijacking your users’ browsers (with
JavaScript, likely) while they’re still logged
in to your site. Protected against by
adding a token (and a check for that token
on the POST side) to every form on the
site.

Dependency injection
Instead of instantiating dependencies in a
class, expect them to be injected in from
the outside—usually through the con-
structor.

Directive
Blade syntax options like @if, @unless,
etc.

Dot notation

Navigating down inheritance trees using .
to reference a jump down to a new level.
If you have an array like: ['owner' =>
['address' => ['linel' => '123 Main
St.']11, you have three levels of nesting.
Using dot notation, you would represent
“123 Main St” as
"owner.address.linel".

408 | Glossary

Eager loading

Avoiding N+1 problems by adding a sec-
ond smart query to your first query to get
a set of related items. Usually you have a
first query that gets a collection of thing
A. But each A has many B, and so every
time you get the B from an A, you need a
new query. Eager loading means doing
two queries: first you get all the As, and
second you get all the B’s related to all
those Ak, in a single query. Two queries,
and you're done.

Echo
A Laravel product that makes WebSocket
authentication and syncing of data simple.

Elixir
Laravel’s build tool; a wrapper around
Gulp.

Eloquent
Laravel's ActiveRecord ORM. The tool
you’'ll use to define something like a User
model.

Environment variable
Variables that are defined in an .env file
that is expected to be excluded from ver-
sion control. This means they don’t sync
between environments and theyre also
kept safe.

Envoyer
A Laravel product for zero-down-time
deployment.

Event

Laravel’s tool for implementing a pub/sub
or observer pattern. Each event represents
that an event happened: the name of the
event describes what happened (e.g., User
Subscribed) and the payload allows for
attaching relevant information. Designed
to be “fired” and then “listened” for (or
published and subscribed, if you prefer
the pub/sub concept).

Facade
A tool in Laravel for simplifying access to
complex tools. Facades provide static
access to core services in Laravel. Since

Homestead

every facade is backed by a class in the
container, you could replace any call to
something like Cache::put(); with a
two-line call to something like $cache =
app('cache'); $cache->put();.

Flag
A parameter anywhere that is on or off
(boolean).

Fluent

Methods that can be chained one after
another are said to be fluent. In order to
provide a fluent syntax, each method must
return the instance, preparing it to be
chained again. This allows for something
like People::where('age', 's>', 14)-
>orderBy('name')->get().

Flysystem
The package that Laravel uses to facilitate
its local and cloud file access.

Forge
A Laravel product that makes it easy to
spin up and manage virtual servers on
major cloud providers like DigitalOcean
and AWS.

FQCN (fully-qualified class name)
The full namespaced name of any given
class, trait, or interface. Controller is the
class name; Illuminate\Routing\Con
troller is the FQCN.

Gulp
A JavaScript-based build tool.

Helper
A globally accessible PHP function that
makes some other functionality easier—
for example, array_get() simplifies the
logic of looking up results from arrays.

Homestead
A Laravel tool that wraps Vagrant and
makes it easier to spin up Forge-parallel
virtual servers for local Laravel develop-
ment.

Glossary | 409

llluminate

llluminate
The top-level namespace of all Laravel
components.

Integration test
Integration tests test the way individual
units work together and pass messages.

loC (inversion of control)

The concept of giving “control” over how
to make a concrete instance of an inter-
face to the higher-level code of the pack-
age instead of the lower-level code.
Without IoC, each individual controller
and class might decide what instance of
Mailer it wanted to create. IoC makes it
so that the low-level code—those control-
lers and classes—just get to ask for a
Mailer, and some high-level configura-
tion code defines once per application
which instance should be provided to sat-
isfy that request.

Job
A class that intends to encapsulate a single
task. Jobs are intended to be able to be
pushed onto a queue and run asynchro-
nously.

JSON
JavaScript Object Notation. A syntax for
data representation.

JWT (JSON Web Token)

A JSON object containing all of the infor-
mation necessary to determine a user’s
authentication state and access permis-
sions. This JSON object is digitally signed,
which is what makes it trustworthy, using
HMAC or RSA. Usually delivered in the
header.

Mass assignment
The ability to pass many parameters at
once to create or update an Eloquent
model, using a keyed array.

Middleware
A series of wrappers around an applica-
tion that filter and decorate its inputs and
outputs.

Memcached
An in-memory data store designed to
provide simple but fast data storage.
Memcached only supports a basic key/
value store.

Migration
A manipulation to the state of the data-
base, stored in and run from code.

Mockery
A library included with Laravel that
makes it easy to mock PHP classes in your
tests.

Model factory
A tool for defining how the application
can generate an instance of your model if
needed for testing or seeding. Usually
paired with a fake data generator like
Faker.

Multitenancy

A single app serving multiple clients, each
of which has its customers. Multitenancy
often suggests that each client of your
application gets its own theming and
domain name, with which to differentiate
its service to its customers vis-a-vis your
other clients’ potential services.

Mutator
A tool in Eloquent that allows you to
manipulate the data being saved to a
model property before it is saved to the
database.

Nginx
A web server similar to Apache.

Option (Artisan)
Like arguments, options are parameters
that can be passed to Artisan commands.
They're prefaced with - - and can be used
as a flag (--force) or to provide data (--
userId=5).

ORM (object-relational mapper)
A design pattern that is centered around
using objects in a programming language
to represent data, and its relationships, in
a relational database.

410 | Glossary

Passport
A Laravel package that can be used to
easily add an OAuth authentication server
to your Laravel app.

PHPSpec
A PHP testing framework.

PHPUnit
A PHP testing framework. The most com-
mon and connected to the most of Lara-
vel’s custom testing code.

Polymorphic
In database terms, able to interact with
multiple database tables with similar char-
acteristics. A polymorphic relationship
will allow entities of multiple models to be
attached in the same way.

Preprocessor
A build tool that takes in a special form of
a language (for CSS, one special form is
LESS) and generates code with just the
normal language (CSS). Preprocessors
build in tools and features that are not in
the core language.

Primary key
Most database tables have a single column
that is intended to represent each row.
This is called the primary key and is com-
monly named id.

Queue
A stack onto which jobs can be added.
Usually associated with a queue worker,
which pulls jobs one at a time from a
queue, works on them, and then discards
them.

Redis
Like Memcached, a data store simpler
than most relational databases but power-
ful and fast. Redis supports a very limited
set of structures and data types but makes
up for it in speed and scalability.

REST
Representational State Transfer, the most
common format for APIs these days. Usu-
ally suggests that interactions with an API

Symfony

should each authenticate separately and
should be “stateless”; also usually suggests
that they use the HTTP verbs for basic
differentiation of requests.

Route
A definition of a way or ways the user
might visit a web application. A route is a
pattern definition; it can be something
like /users/5, or /users, or /users/{id}.

Saa$
Software as a Service. Web-based applica-
tions that you pay money to use.

Scope
In Eloquent, a tool for defining how to
consistently and simply narrow down a

query.

Scout
A Laravel package for full-text search on
Eloquent models.

Serialization
The process of converting more complex
data (usually an Eloquent model) to
something simpler (in Laravel, usually an
array or JSON).

Service provider
A structure in Laravel that registers and
boots classes and container bindings.

Soft delete
Marking a database row as “deleted”
without actually deleting it, usually paired
with an ORM that by default hides all
“deleted” rows.

Spark
A Laravel tool that makes it easy to spin
up a new subscription-based Saa$S app.

Symfony
A PHP framework that focuses on build-
ing excellent components and making
them accessible to others. Symfony’s
HTTP Foundation is at the core of Laravel
and every other modern PHP framework.

Glossary | 411

Tinker

Tinker
Laravel's REPL, or read-evaluate-print
loop. It’s a tool that allows you to perform
complex PHP operations within the full
context of your app from the command
line.

TL;DR
Too long; didn’t read. “Summary”

Typehint
Prefacing a variable name in a method
signature with a class or interface name.
Tells PHP (and Laravel, and other devel-
opers) that the only thing that’s allowed to
be passed in that parameter is an object
with the given class or interface.

Unit test
Unit tests target small, relatively isolated
units—a class or method, usually.

Vagrant
A command-line tool that makes it easy to
build virtual machines on your local com-
puter using predefined images.

Valet
A Laravel package (for Mac OS users, but
there are forks for Linux and Windows)
that makes it easy to serve your applica-
tions from your development folder of
choice, without worrying about Vagrant
or virtual machines.

Validation
Ensuring that user
expected patterns.

input matches

View composer
A tool that defines that, every time a given
view is loaded, it will be provided a cer-
tain set of data.

View
A template file that defines HTML to be
sent to the end user; often includes
accepting data from a controller and for-
matting it as part of the HTML.

412 | Glossary

Symbols

arrow
-> chaining methods, 28, 32
-> traversing JSON structure, 156
=> preceding Tinker responses, 128

* (asterisk), following array arguments or
options, 122

@ (at sign)
in controller/method reference, 206
preceding Blade directives, 55
preceding Blade echo syntax, 56

\ (backslash), escaping in Artisan commands,
374

{} (braces)
enclosing Artisan command arguments, 121
enclosing route parameters, 43, 100
{{ }}, Blade echo syntax, escaped, 56, 110
{ir11}, Blade echo syntax, not escaped, 56,

110

i (colon, double), in facades, 256

= (equal sign), in Artisan argument definition,
122

- - (hyphen, double), preceding Artisan com-
mand options, 122

. (period), dot notation, 408

? (question mark)
following optional Artisan command argu-

ments, 121

following optional parameters, 27
query parameters, 148

/ (slash), escaping in Artisan commands, 285

A

abilities (rules) for authorization, 213

Index

abort() helper, 52, 395
abort_if() helper, 52, 395
abort_unless() helper, 52, 395
acceptance tests (see application tests)
accepts() method, Request, 232
access control list (ACL) (see authorization)
accessors, 171, 179, 194, 407
ACL (access control list) (see authorization)
action() helper, 50, 394
ActiveRecord pattern, 157, 407

(see also Eloquent)
add() method, Cache, 324
addGlobalScope() method, 169
after() method, Blueprint, 138
after() method, tasks, 386
Algolia SDK, 329
aliases, binding to, 253
all() method, collection, 400
all() method, Eloquent, 160, 161
all() method, ParameterBag, 231
all() method, Request, 96, 110, 230
all() method, Session, 322
allDirectories() method, Storage, 318
allFiles() method, Storage, 317
allows() method, Gate, 214
anonymous functions (see closures)
anticipate() method, 125
api guard, 209
api middleware group, 243
API routes, 23

(see also routes)
api.php file, 23
APIs, 283-284

authentication with API tokens, 311-312

413

authentication with Passport, 297-311
filtering results, 293
JSON for, 284, 287, 291
nesting relationships between resources,
295-297
paginating results, 289-290
request headers, reading, 288, 289
resource controllers, 285-288
response headers, sending, 288
REST style of, 283-284
sorting results, 291-292
testing, 312
transforming results, 293-295
.app domain, 15
app folder, 18
app() helper, 230, 249
app-namespaced commands, Artisan, 115
app.js file, 379
app.php file in config, 329, 376
append() method, Storage, 317
appendOutputTo() method, tasks, 385
application
bootstrapping, 226-227
exiting, 397
kernel, 226
lifecycle, 225-228
application container (see container)
application tests, 262, 266-277, 407
assertions, 270-274, 407
clicking and forms, 275-276
jobs and events, 276
visiting routes, 268-269
AppServiceProvider, 258
app_path() helper, 393
argument() method, Artisan, 123
arguments (Artisan), 407
arrays
as Artisan arguments or options, 122
collections as alternative to, 175
converting to collections, 396
helpers for, 389-390
array_filter() method, 399
array_first() helper, 389
array_get() helper, 390
array_has() helper, 390
array_map() method, 399
array_pluck() helper, 390
arrow
-> chaining methods, 28, 32

-> traversing JSON structure, 156
=> preceding Tinker responses, 128
Artisan commands, 113-127, 407, 408
arguments for, 407
calling from code, 121, 127
calling other commands from, 127
custom, 117-122
escaping slashes in, 285
listing, 114
options for, 114-115, 410
output during, 125-127
progress bars for, 126
prompting for user input, 124-125
queueing, 116, 364
scheduling as tasks, 383
testing, 128, 277
using input from, 123-125
Artisan facade, 127, 129
artisan file, 19
artisan() method, TestCase, 277
ask() method, 124
assertEquals() method, TestCase, 334
assertHasOldInput() method, TestCase, 334
assertions, 270-274, 407
assertNotSent() method, notification, 353
assertPageLoaded() method, TestCase, 270
assertRedirectedTo() method, TestCase, 273
assertRedirectedToAction() method, TestCase,
273
assertRedirectedToRoute() method, TestCase,
273
assertResponseOK() method, TestCase, 272
assertResponseStatus() method, TestCase, 272
assertSent() method, notification, 353
assertSessionHas() method, TestCase, 274, 333
assertSessionHasAll() method, TestCase, 274,
333
assertSessionHasErrors() method, TestCase,
274,333
assertSessionMissing() method, TestCase, 333
assertViewHas() method, TestCase, 72, 272
assertViewHasAll() method, TestCase, 272
assertViewMissing() method, TestCase, 272
assets folder, 77
associate() method, Eloquent, 182
asterisk (*), following array arguments or
options, 122
at sign (@)
in controller/method reference, 206

M4 | Index

preceding Blade directives, 55
preceding Blade echo syntax, 56
attach() method, Eloquent, 185
attach() method, mailable, 342
attach() method, TestCase, 275
attachData() method, mailable, 342
attempt() method, authentication, 207
attempts() method, jobs, 361
attribute casting, 173
auth commands, Artisan, 115
Auth facade, 201
auth middleware, 209
auth scaffold, 206-207
auth() helper, 201, 396
auth.basic middleware, 209
auth.php file, 210, 298
Auth:routes() facade, 205
AuthController, 197
Authenticatable contract, 200
authentication, 197-212, 407
APIs for, 297-312
contracts, 200
create_users_table migration, 198
events, 212
ForgotPasswordController, 205
guards for, 209-211
LoginController, 203-204
manual authentication, 208
RegisterController, 201-203
RegistersUsers trait, 202
remember me access token, 207
ResetPasswordController, 204
route middleware for, 208
routes for, 205
setting up, 206
testing, 221-223, 277
User model, 198-201
views for, 206-207
WebSocket (see Echo)
Authorizable contract, 200
Authorizable trait, 217
authorization, 198, 212-221, 407
Authorizable contract, 200
AuthorizesRequests trait, 215-217
Blade checks, 217
checking user capabilities, 217-218
Gate facade, 212, 214
overriding checks, 218
Passport package, 221

policies, 218-221
route middleware for, 214
rules (abilities) for, defining, 213
testing, 221-223
authorization code grant, Passport, 301-305
authorize() method, AuthorizesRequests trait,
215
authorize() method, form request, 108
authorizeForUser() method, AuthorizesRe-
quests trait, 215
authorizeResource() method, AuthorizesRe-
quests trait, 216
AuthorizesRequests trait, 215-217
AuthServiceProvider, 213, 219, 227, 309
autowiring, 250-251, 407
avg() method, collection, 404
avg() method, DB, 154
avg() method, Eloquent, 162
away() method, redirects, 50

B
back() helper, 50, 237, 396
backslash (1), escaping in Artisan commands,
374
base_path() helper, 393
be() method, TestCase, 221, 277
beanstalkd queues, 356, 408
before() method, tasks, 386
beginTransaction() method, DB, 157
Behat, 261
belongsTo() method, Eloquent, 180, 182, 190
belongsToMany() method, Eloquent, 184, 190
bigIncrements() method, Blueprint, 137
bigInteger() method, Blueprint, 136
billing (see Cashier package)
binary() method, Blueprint, 136
bind() method, 252, 253
binding
classes to container, 251-254
data to views, 64-67
PDO parameter binding, 148
route model binding, 43-44
Blade, 55-56, 408
checks using, 217
conditionals, 57
custom directives, 68-71
directives for, 55, 408
echoing PHP in, 56
$expression parameter, 70

Index | 415

included view partials, 62, 63
loops, 58-59, 63
multitenancy using, 70-71
or helper, 60
sections, 60
service injection, 67-68
templates, 34, 60-64
Blueprint class, 136-138
boolean() method, Blueprint, 136
boot() method, Eloquent model, 169
boot() method, service providers, 44, 213, 227,
309
bootstrap folder, 18
bootstrapping application, 226-227
braces ({ })
enclosing Artisan command arguments, 121
enclosing route parameters, 43, 100
{{ }}, Blade echo syntax, escaped, 56, 110
{1111}, Blade echo syntax, not escaped, 56,
110
broadcast notifications, 352
broadcast() helper, 375, 382
broadcastAs() method, events, 371
broadcasting events (see WebSockets)
broadcasting.php file, 370
broadcastOn() method, events, 365, 370
BroadcastServiceProvider, 376
broadcastWith() method, events, 372
build() method, mailable, 339

C
cache commands, Artisan, 115
Cache facade, 323
cache() helper, 324
cache.php file, 323
caches
accessing, 115, 323-325
data stores used by, 133
for custom directive results, 69
for routes, 45
testing, 334
call() method, Artisan, 127
call() method, container, 256
call() method, TestCase, 269, 334
@can directive, 217
can() method, Authorizable, 217
@cannot directive, 217
cannot() method, Authorizable, 217
CanResetPassword contract, 200

cant() method, Authorizable, 217
capture() method, Request, 229
Carbon package, 173, 324, 408
Cashier package, 408
chaining methods, 28, 32
change() method, 138
channel() method, Broadcast, 376
channel() method, Echo, 380
char() method, Blueprint, 136
check() method, authorization, 201
check() method, TestCase, 275
choice() method, 125
chunk() method, collection, 403
chunk() method, Eloquent, 162
classes
autowiring to container, 407
FQCN (fully-qualified class name) for, 409
view composers using, 66-67
clear command, Artisan, 114
clearInputs() method, TestCase, 276
click() method, TestCase, 275
closures, 24, 408
binding to, 252
defining Artisan commands as, 120
defining route groups using, 30
defining routes using, 23-25, 26
view composers using, 65
Cloud storage (see storage)
cloud-based mail, 337
Codelgniter framework, 408
collect() helper, 174, 396, 400
Collection class, 148, 174-175
Collection pattern, 408
collections, 398-405
compared to arrays, 399-400
converting to arrays, 400
returned by Eloquent, 174-176
serialization, 177
using outside Laravel, 405
colon, double (::), in facades, 256
commands, Artisan (see Artisan commands)
comment() method, Artisan, 125
commit() method, DB, 157
compiled.php file, 226
Composer, 12, 226, 408
commands for, 17, 18
new projects, creating, 18
service provider features with, 228
composer.json file, 19

416 | Index

composer.lock file, 19
conditionals (Blade), 57
config commands, Artisan, 115
config folder, 19, 20
config() helper, 396
config/app.php file, 329, 376
configuration files, 19, 20, 210, 393
config_path() helper, 393
confirm() method, Artisan, 124
Console component, Symfony, 113
constructor injection, 247, 249, 254
contact information for this book, xviii
container, 40, 408
accessing facade backing class from, 257
accessing objects from, 249
autowiring, 250-251
binding classes to, 251-254
classes in, autowiring, 407
constructor injection, 254
dependency injection, 247-249
method injection, 255
registering bindings for, 258
contextual binding, 254
contracts (see interfaces)
Contracts namespace, 200
controllers, 36-42, 408
applying middleware using, 32
creating, 36-38
getting and handling user input, 39-40
handling routes using, 26
injecting dependencies into, 40-41
method reference syntax for, 206
namespace for, 38
resource controllers, 41-42, 285-288
Cookie facade, 326-327
cookie() helper, 327
cookie() method, Request, 233, 328
cookie() method, Response, 328
CookieJar class, 326, 327, 327
cookies, 325-329
accessing with Cookie facade, 326-327
accessing with cookie() helper, 327
accessing with Request and Response, 328
configuring, 327
disabling encryption for, 334
locations of, 326
manually encrypting for, 335
testing, 334-335
copy() method, Storage, 317

count() method, collection, 404
count() method, DB, 154
count() method, Eloquent, 162
count() method, ParameterBag, 231
create() method, model factories, 144, 163, 164
create() method, resource controllers, 42
create() method, Schema, 135
create, read, update, delete (see CRUD)
CreateFreshApiToken middleware, 306, 307
create_users_table migration, 134, 198
cron jobs, scheduler as alternative to, 382
cross-site request forgery (CSRF), 408
CRUD (create, read, update, delete), 36
(see also resource controllers)
CSREF (cross-site request forgery), 46-48, 379,
408
csrf_field() helper, 396
csrf_token() helper, 396
CSS
preprocessor for, 75-77, 78, 411
preprocessorless, in Elixir, 79
custom route model binding, 44

D
database folder, 19
database notifications, 351
DatabaseMigrations trait, 266
databases, 131
(see also Eloquent)
connections to, configuring, 131-133
custom guard providers for, 211
database types supported, 132, 146
Homestead, 13-17, 409
migrations, 133-141
paginating results from, 84-86
query builder, 146-157
seeders, 141-146
testing, 193-195
Tinker interacting with, 128
DatabaseSeeder class, 141
DatabaseTransactions trait, 266
database_path() helper, 393
date mutators, 174
dates and times (see Carbon package; schedu-
ler; timestamps)
datetime() method, Blueprint, 136
db commands, Artisan, 115
DB facade, 147
db:seed command, Artisan, 142

Index | 417

dd() helper, 397
Dead Man’s Snitch, 386
decimal() method, Blueprint, 136
decrement() method, Cache, 325
decrement() method, DB, 156
default() method, Blueprint, 137
define() method, Gate, 214
define() method, model factories, 143
delay() method, jobs, 360
delay() method, notification, 349
DELETE method, 45-46
for resource controllers, 42
routes based on, 25
delete() method, DB, 149, 156
delete() method, Eloquent, 165
delete() method, Storage, 317
delete() method, TestCase, 269
deleteDirectory() method, Storage, 317
deleted_at column, 166
deletes, soft, 411
denies() method, Gate, 214
dependency injection, 247-249, 408
constructor injection, 247, 249, 254
method injection, 247, 255
setter injection, 247
testing using, 258
destroy() method, resource controllers, 42
detach() method, Eloquent, 185
development environments, 12-17

DI (dependency injection) container (see con-

tainer)
directives (Blade), 55, 408
directories() method, Storage, 318
disk() method, Storage, 316, 319
dispatch() helper, 359, 397
DispatchesJobs trait, 359
dissociate() method, Eloquent, 182
distinct() method, DB, 152
dnsmasq tool, 12
domains, top-level, 15
dontSee() method, TestCase, 270
dontSeeInDatabase() method, TestCase, 271
dontSeelnField() method, TestCase, 270
dontSeelsChecked() method, TestCase, 270
dontSeelsSelected() method, TestCase, 270
dontSeeJson() method, TestCase, 271
dontSeeLink() method, TestCase, 270
dot notation (.), 408
double() method, Blueprint, 136

down command, Artisan, 114

down() method, migrations, 134, 135
download responses, 235

download() method, Response, 53, 235

E
e() helper, 88, 391
@each directive, Blade, 63
each() method, collection, 402
eager loading, 191-192, 409
Echo, 370, 373, 374-382, 409
authorization for channels, 376-378
excluding user from events, 375, 382
JavaScript package for, 378-382
listening for events, 379
presence channels, 381
private channels, 380
service provider configuration, 376
subscribing to channels, 380
subscribing to notifications, 382
edit() method, resource controllers, 42
Elixir build tool, 75-84, 409
directory structure for, 77
documentation for, 78
extensions for, 83-84
JavaScript, concatenating, 80
JavaScript, processing, 81
multiple files, processing, 78
preprocessorless CSS, 79
production mode, 78
running, 77
source maps, generating, 79
tests, running, 82
versioning, 81-82
versions of, 77
elixir() helper, 82, 395
Eloquent, 84, 157-193, 409
accessors, 171, 179, 194, 407
aggregates, 162
attribute casting, 173
collections returned by, 174-176
customzing route key for, 44
date mutators, 174
deletes, 165-168
eager loading, 191-192, 409
events, 192-193
exceptions thrown by, 161
fillable or guarded properties, 164
filtering API results, 293

418 | Index

full-text search for, 329-331
inserts, 162-163, 165
JSON results for APIs, 287
mass assignment, 109, 164-165, 410
migration, creating with model, 159
model, creating, 159-160
mutators, 172-173
pagination for, 84-86, 289-290
primary keys, 159
query builder, 84
relationships, 179-190
retrieving data, 160-162
scopes (filters), 168-171, 411
serialization, 177-179
sorting results, 291-292
table names, 159
timestamps, 137, 160, 174, 190-192
transforming results, 293-295
updates, 163-165
user input from, 109
@else directive, Blade, 57, 217
@elseif directive, Blade, 57
email notifications, 350-350
emailOutputTo() method, tasks, 385
EncryptCookies middleware, 334
encryption
disabling for cookies, 334
generating keys for application, 115
generating keys for OAuth server, 298
manually encrypting cookies, 335
of session data, 320
@endcan directive, 217
@endcannot directive, 217
@endif directive, Blade, 57
@endsection directive, Blade, 61, 62
ends_with() helper, 88, 391
@endunless directive, Blade, 57
enum() method, Blueprint, 136
env command, Artisan, 114
.env file, 19, 20
env() helper, 20, 397
.env.example file, 19
.env.test file, 265
environment variables, 409
returning, 397
setting for tests, 265
environment() method, 265
Envoyer, 386, 409

equal sign (=), in Artisan argument definition,
122
error bags, 87-88, 92
error() method, 125
errors and exceptions
from Eloquent, 161
from HTTP, 395
from jobs in queue, handling, 360-363
in message and error bags, 87-88, 92
from session, testing for, 274, 333
from user input, displaying, 106
$errors variable, 87-88
ESé6, JavaScript, 77
event commands, Artisan, 115
Event facade, 364
event() helper, 364, 397
event-related tests, 276
events, 364-369, 409
authentication, 212
broadcasting over WebSockets (see Web-
Sockets)
creating, 364-366
Eloquent, 192-193
firing, 364-366, 397
listeners for, creating, 366-368
Pub/Sub pattern used by, 364
subscribers for, 368-369
ExampleTest.php file, 262
except() method, Request, 96, 230
exceptions (see errors and exceptions)
exists() method, Request, 97, 230
exists() method, Storage, 317
expectsEvents() method, TestCase, 276
expectsJob() method, TestCase, 276
$expression parameter, Blade, 70
extend() method, Storage, 318
@extends directive, Blade, 61

F

facades, 256-258, 409
accessing backing class of, 257
creating, 258
importing, 40
importing namespaces for, 257
injecting backing class of, 258
mocking, 281
namespaces for, 99
static calls using, 25

factory() helper, 143, 144, 397

Index | 419

failed() method, jobs, 362

failing() method, Queue, 362

Faker, 261, 332

File facade, 318

file responses, 236

file() method, Faker, 332

file() method, Request, 101, 232
file() method, Response, 53, 236
files() method, Storage, 317
filesystem storage (see storage)
filesystems.php file, 315, 316
file_get_contents() function, 319
fillable or guarded properties, 164
fillForm() method, TestCase, 276
filter() method, collection, 401
filtering API results, 293

filters (see scopes (filters), Eloquent)
find() method, DB, 154

find() method, Eloquent, 160
findOrFail() method, DB, 154
findOrFail() method, Eloquent, 160
first() method, Blueprint, 138

first() method, collection, 401

first() method, DB, 153, 153

first() method, Eloquent, 160
firstOrCreate() method, Eloquent, 165
firstOrFail() method, DB, 153
firstOrFail() method, Eloquent, 160
firstOrNew() method, Eloquent, 165
flags, 409

flash() method, Request, 233

flash() method, Session, 323
flashExcept() method, Request, 233
flashOnly() method, Request, 233
float() method, Blueprint, 136
fluent interface, 146

fluent methods, 409

flush() method, Cache, 325

flush() method, Request, 233

flush() method, Session, 322
flushSession() method, TestCase, 277
Flysystem package, 315, 318, 409
followRedirects() method, TestCase, 269
fonts used in this book, xvi
forceDelete() method, Eloquent, 168
forever() method, Cache, 325

Forge, 356, 409

forget() method, Cache, 325

forget() method, Session, 322

ForgotPasswordController, 205
form encoding, 103
form method spoofing, 45-46
form requests, 107-109, 245
form-related tests, 275-276
forUser() method, Gate, 214, 217
FQCN (fully-qualified class name), 409
Fractal package, 294
frameworks, 1-4

(see also Laravel)
from() method, mailable, 341
full-text search, 329-331
fully-qualified class name (FQCN), 409
functional tests (see application tests)
functions (see helper functions)

G
Gate facade, 212, 214
GET method, 45-46
for resource controllers, 42
routes based on, 25
get() method, Cache, 323, 324
get() method, Cookie, 326
get() method, DB, 149, 153
get() method, Eloquent, 160, 161
get() method, ParameterBag, 231
get() method, Route, 28
get() method, Session, 321
get() method, Storage, 317
get() method, TestCase, 269
getFacadeAccessor() method, 257
getRealPath() method, SplFileInfo, 319
.gitignore file, 19
give() method, 254
global scopes, 169-171
grant types, Passport, 299-307
groupBy() method, collection, 403
groupBy() method, DB, 153
guard() method, 210
guarded or fillable properties, 164
guards, 209-211
adding, 210
default, changing, 209
driver for, 209, 210
provider for, 209-211
selecting, 210
guest middleware, 209
guest() method, 201
guest() method, redirects, 50

420 | Index

Gulp build tool, 75, 77, 409
gulp command, 78

gulp tdd command, 83
gulp watch command, 92
gulpfile js file, 19, 76

H
handle() method, events, 367
handle() method, jobs, 358
handle() method, requests, 226, 240-241, 244
has() method, Cache, 325
has() method, Cookie, 326
has() method, Eloquent, 183
has() method, ParameterBag, 231
has() method, Request, 97, 231
has() method, Session, 322
HasApiTokens trait, 298
hasCookie() method, Request, 233
hasFile() method, Request, 102, 232
hasMany() method, Eloquent, 181
hasManyThrough() method, Eloquent, 183
hasOne() method, Eloquent, 180
having() method, DB, 153
havingRaw() method, DB, 153
HEAD method, 45-46
header() method, Request, 232, 289
header() method, Response, 289
headers (see request headers; response headers)
help command, Artisan, 114
helper functions, 389-398, 409

(see also specific helpers)

for arrays, 389-390

for paths, 393

for strings, 391-392

for URLs, 394-395
here() method, Echo, 381
$hidden property, 294
home() method, redirects, 50
Homestead, 13-17, 409

configuring, 14-16

databases, connecting to, 17

databases, creating, 16

dependencies for, 13

initializing, 16

installing, 14

setting up, 13-16

starting and stopping, 16

tools provided with, 13
Homestead.yaml file, 14-16

.htaccess file, 225

htmlentities() function, 56, 391

HTTP methods (verbs), 25, 42, 45-46

HTTP redirects, 48-52, 396, 398

HTTP requests, 52, 225-226, 228-233
(see also Request object)

HTTP responses, 52, 233-238, 398
(see also Response object)

HttpFoundation classes, 228

hyphen, double (- -), preceding Artisan com-
mand options, 122

I

icons used in this book, xvii

id() method, 201

@if directive, Blade, 57

Muminate namespace, 410

implicit route model binding, 43
@include directive, Blade, 62
increment() method, Cache, 325
increment() method, DB, 156
increments() method, Blueprint, 137
index() method, Blueprint, 138
index() method, resource controllers, 42
index.php file, 226-227

info() method, 125

@inject directive, Blade, 68

Input facade, 39

input() method, Request, 97, 98, 230
inRandomOrder() method, DB, 153
insert() method, DB, 148, 155
insertGetId() method, DB, 155
installer tool, 17, 20

instances, binding to, 253

integer() method, Blueprint, 136
integration tests, 262, 410
intended() method, redirects, 50
InteractsWithQueue trait, 358
interfaces (contracts), 200, 253, 408
Intervention library, 319

IoC (inversion of control), 248, 254, 258, 410
IoC container (see container)

ip() method, Request, 232

is() method, Request, 232

isEmpty() method, collection, 404
isJson() method, Request, 232
isValid() method, File, 102

Index | 421

J

JavaScript
concatenating, in Elixir, 80
escaping backslashes in, 374
processing, in Elixir, 81
JavaScript ES6, 77
JavaScript Object Notation (see JSON)
Job class, 410
job-related tests, 276
jobs, 355, 356-360
(see also queues)
creating, 357-359
deleting, 363
dispatching, 397
failed, handling, 360-363
number of tries for, 361
pushing onto queue, 359-360
releasing back to queue, 363
retrying, 363
join() method, DB, 155
join() method, Echo, 381
JSON (JavaScript Object Notation), 410
API pattern for, 284
API spec for, 291
assertions, 271-274
operations, 156, 177-179
responses, 236
testing, 264
JSON Web Token (JWT), 306, 410
json() method, Blueprint, 136
json() method, Request, 98, 231
json() method, Response, 53, 236
json() method, TestCase, 269
jsonb() method, Blueprint, 136
jsonp() method, Response, 53
JWT (JSON Web Token), 306, 410

K

keep() method, Session, 323
kernel, 226

Kernel.php file, 241

key commands, Artisan, 115
keys() method, ParameterBag, 231

L

Lambo package, 21
Laravel
advantages of, 4-6

community for, 6-7
documentation for, xvi
installer, 17, 20
local development environments for, 12-17
PHP versions and extensions for, 11
starting, 20
system requirements, xvi, 11-12
versions of (see versions of Laravel)
Laravel Echo (see Echo)
Laravel Envoyer, 386
Laravel Forge (see Forge)
laravel new command (Laravel installer), 17, 20
laravel.log file, 344
last() method, collection, 401
lastModified() method, Storage, 317
later() method, Mail, 343
latest() method, DB, 153
lazy loading, 191, 192
leftJoin() method, DB, 155
LengthAwarePaginator class, 85
lifecycle of application, 225-228
line() method, 125
links() method, 85
list command, Artisan, 114
listen() method, Echo, 380
listeners, for events, 366-368
local development environments, 12-17
local disk, 316
local scopes, 168
localization, 89-91, 92
Log facade, 256-258
logging, 256-258, 344
login() method, 203, 208
LoginController, 203-204
loginUsingld() method, 208
longText() method, Blueprint, 136
$loop variable, 59
loops (Blade), 58-59, 63

M

mail, 337-345
attachments, 342-343
capturing, 344
classic mail, 338
configuring, 337
creating, 338-340
customizing, 341
drivers supported, 337
HTML format, 341

422 | Index

inline images, 343
logging, 344
mailable mail, 338-340
manually modifying, 342
plain text format, 341
queues for, 343
sending, 340
templates, 340
testing, 344, 352
universal to, 345
Mail facade, 338
mail.php file, 337, 345
MailThief, 352
Mailtrap, 344
make commands, Artisan, 116
make() method, app, 250
make() method, Cookie, 326, 328
make() method, model factories, 144
make() method, Response, 53
make:auth command, Artisan, 206, 309
make:controller command, Artisan, 36, 37, 38,
41
make:event command, Artisan, 364
make:;job command, Artisan, 357
make:mail command, Artisan, 338
make:middleware command, Artisan, 239
make:migration command, Artisan, 135
make:model command, Artisan, 159, 286
make:notification command, Artisan, 345
make:policy command, Artisan, 218
make:request command, Artisan, 107
make:seeder Artisan command, 142
makeVisible() method, Eloquent, 178
many-to-many relationships, 179, 184-186
map() method, collection, 402
mapApiRoutes() method, RouteServicePro-
vider, 243
mapWebRoutes() method, RouteServicePro-
vider, 243
mass assignment, 109, 164-165, 410
max() method, DB, 154
Mbstring PHP extension, 11
mediumInteger() method, Blueprint, 136
mediumText() method, Blueprint, 136
Memcached data store, 133, 410
message bags, 86-88, 92
MessageBag class, 86-88
method injection, 247, 255
method() method, Request, 231

methods, 28

(see also specific methods)

chaining, 28, 32

fluent, 409

HTTP methods (verbs), 25, 42, 45-46
middleware, 24, 238-245, 410

binding, 241-244

custom, creating, 239-241

for authentication, 208

for authorization, 214

groups, 242

passing parameters to, 244

route groups for, 31-32
middleware() method, 32, 243
migrate commands, Artisan, 114, 116, 141, 142,

286
migrations, 133-141, 410

columns, creating, 135-137

columns, modifying, 138-139

creating with Eloquent model, 159

defining, 134-140

field properties, setting, 137

foreign keys, adding, 140

foreign keys, dropping, 140

indexes, adding, 139

indexes, removing, 140

running, 141

tables, creating, 135

tables, dropping, 138

types of, 134
min() method, DB, 154
mix.browserify() method, 81
mix.phpSpec() method, 83, 92
mix.phpUnit() method, 83, 92
mix.rollup() method, 81
mix.sass() method, 76, 78
mix.scripts() method, 80
mix.styles() method, 79
mix.version() method, 82
mix.webpack() method, 81
Mockery library, 261, 278-281, 410
model factory, 143-146, 410
Model-View-Controller (MVC) pattern (see

controllers) (see views)
modelKeys() method, collection, 176
morphedByMany() method, Eloquent, 189
morphs() method, Blueprint, 137
morphsTo() method, Eloquent, 187
morphToMany() method, Eloquent, 189

Index | 423

move() method, Storage, 317

multitenancy, 70-71, 410

mutators, 172-173, 410

MVC (Model-View-Controller) pattern (see
controllers; views)

N

name prefixes, route groups for, 34
name() method, 28
namespace prefixes, route groups for, 33
namespaces
for contracts, 200
for controllers, 38
default App namespace, replacing, 115
escaping backslashes in JavaScript, 374
for facades, 40, 99, 257
in FQCN (fully-qualified class name), 409
Mluminate, 226, 410
make namespace, for Artisan, 37, 118
needs() method, 254
Nexmo, 352
Nginx web server, 410
Node.js, installing, 77
Notifiable trait, 349
Notification facade, 349
notifications, 345-352
broadcast notifications, 352
channels for, 345, 348
creating, 345-348
database notifications, 351
drivers supported, 350
email notifications, 350-350
queueing, 349
recipients of, 347
sending, 349
Slack notifications, 352
SMS notifications, 352
subscribing to, 382
testing, 353
notifications commands, Artisan, 116
notify() method, Notifiable, 349
npm install command, 378
nullable() method, Blueprint, 137
nullableTimestamps() method, Blueprint, 137

0
OAuth 2.0, 221, 297

(see also Passport package)
object-relational mapper (see ORM)

Observer pattern, events for, 409
old() helper, 51, 398
old() method, Request, 233
oldest() method, DB, 153
onConnection() method, jobs, 359
onConnection() method, mailable, 344
one-to-many relationships, 179, 181-182
one-to-one relationships, 180-181
online resources
Elixir documentation, 78
facades documentation, 258
for this book, xviii
Homestead documentation, 14
Laravel documentation, xvi
SSH keys, creating, 15
Valet documentation, 12
only() method, Request, 96, 110, 165, 230
onlyTrashed() method, Eloquent, 167
onQueue() method, events, 372
onQueue() method, jobs, 360
onQueue() method, mailable, 344
onUserSubscription() method, events, 369
OpenSSL PHP extension, 11
operating system requirements, xvi, 11
optimize command, Artisan, 114, 115
option() method, 123
options (Artisan), 410
OPTIONS method, 45-46
or helper, Blade, 60
orderBy() method, DB, 152
orderBy() method, Eloquent, 160, 291
ORM (object-relational mapper), 84, 410
(see also Eloquent)
orWhere() method, DB, 150-151

P
package.json file, 19
paginate() method, 84, 289-290
pagination, 84-86
Paginator class, 85
parameter binding, PDO, 148
ParameterBag class, 231
@parent directive, Blade, 62
Passport package, 221, 297-311, 411
grant types for, 299-307
installing, 297-299
routes for, 298, 299, 307
scopes, 309-311
Vue components, 308-309

424 | Index

PassportServiceProvider, 297
password grant, Passport, 300-301
PATCH method, 45-46

for resource controllers, 42

routes based on, 25
patch() method, TestCase, 269
path prefixes, route groups for, 32
path() method, Request, 231
paths

for facades, 99

helpers for, 393

in FQCN (fully-qualified class name), 409
PDO parameter binding, 148
PDO PHP extension, 11
period (.), dot notation, 408
personal access client, 305
personal access tokens, Passport, 305
PHP

versions and extensions for, 11

views rendered with, 34
PHPSpec testing framework, 411
PHPUnit testing framework, 21, 261, 411
phpunit.xml file, 19, 265
pingBefore() method, tasks, 386
pivot table, 184-186
pjax() method, Request, 232
pluck() method, collection, 403
pluralization, 88, 91
policies for authorization, 218-221
polymorphic relationships, 179, 186-190, 411
POST method, 45-46

for resource controllers, 42

getting user input from, 39

routes based on, 25
post() method, TestCase, 269
prepend() method, Storage, 317
preprocessors, 411
press() method, TestCase, 276
primary keys, 411
primary() method, Blueprint, 138
priority() method, mailable, 342
private() method, Echo, 380
progress bars, 126
progressAdvance() method, 126
progressFinish() method, 126
progressStart() method, 126
projects

configuring, 20

creating, 17-18

directory structure for, 18-20
provides() method, service providers, 228
Pub/Sub pattern, 364, 369, 409
public disk, 316
public folder, 19
pull() method, Cache, 324
pull() method, Session, 322
push() method, Session, 322
Pusher, 370, 373-378
PUT method, 45-46

for resource controllers, 42

routes based on, 25
put() method, Cache, 324
put() method, Session, 321
put() method, Storage, 317, 319
put() method, TestCase, 269
putFile() method, Storage, 317

Q
query builder, 146-157
(see also Eloquent)
aggregates, 154
chaining methods with, 149-156
constraining queries, 149-152
database types supported, 146
DB facade for, 147
deletes, 156
inserts, 155
joins, 155
JSON operations, 156
modifying queries, 152-153
multiple query results, format for, 148
pagination for, 84-86, 290
parameter binding, 148
raw SQL queries, 147-149, 154
relationships as, 182
returning results, 153-154
transactions, 156
unions, 155
updates, 156
question mark (?)
following optional Artisan command argu-
ments, 121
following optional parameters, 27
query parameters, 148
question() method, 125
queue commands, Artisan, 116
queue() method, Cookie, 327
queue() method, Mail, 343

Index | 425

queue.php file, 356
queue:failed command, Artisan, 362
queue:failed-table command, Artisan, 362
queue:flush command, Artisan, 363
queue:forget command, Artisan, 363
queue:listen command, Artisan, 361
queue:retry all command, Artisan, 363
queue:retry command, Artisan, 363
queue:work command, Artisan, 360, 361
Queueable trait, 358
queues, 355-364, 411

for Artisan commands, 116, 364

beanstalkd for, 408

benefits of, 356

configuring, 356

creating jobs in, 357-359

deleting jobs in, 363

dispatching jobs in, 397

errors with, handling, 360-363

for jobs, 356

for mail, 343, 364

number of tries for jobs, 361

providers and drivers for, 356

pushing jobs onto, 359-360

releasing jobs back to, 363

retrying jobs, 363

workers, 360, 370

R
raw() method, DB, 154
read-evaluate-print-loop (REPL) (see Tinker)
readme.md file, 19
Redirect facade, 48
redirect() helper, 48-52, 237, 398
redirectPath() method, 203
redirects, 48-52
Redis, 133, 373, 374, 411
reduce() method, collection, 402
reflash() method, Session, 323
refresh() method, redirects, 50
regenerate() method, Session, 322
register() method, RegisterUsers, 203
register() method, service providers, 227, 252,
258
RegisterController, 201-203
RegistersUsers trait, 202
regular expressions
passing to str_is(), 392
route constraints using, 27

reject() method, collection, 401
relationships, 179-190
as query builders, 182
eager loading, 191-192, 409
inserting related items, 181
lazy loading, 191, 192
serialization of, 178
release() method, jobs, 363
remember me access token, 207
remember() method, Cache, 325
rememberForever() method, Cache, 325
rememberToken() method, Blueprint, 137
render() method, pagination, 85
REPL (read-evaluate-print-loop) (see Tinker)
Representational State Transfer (REST),
283-284,411
Request facade, 95
request headers, 288, 289
Request object, 95-99, 228-233
accessing, 229-232
array input, accessing, 98
capturing directly, 229
file handling methods, 232
form requests, 245
headers for, 288, 289
JSON input, accessing, 98
lifecycle of, 225-228
persistence of, for session interaction, 233
reading cookies from, 328
testing, 245-246
typehinting in constructors, 41, 229-230
user and request state methods, 231
user input methods, 230-231
request() helper, 95, 99, 230
reset() method, 204
resetPassword() method, 204
ResetPasswordController, 204
resource controller binding, 42
resource controllers, 41-42, 285-288
resources folder, 19, 77
resources, API, 283, 295-297
resources, online (see online resources)
response headers, 288
Response object, 233-238
creating, 233-234
custom, 52
custom response macros, 238
download responses, 235
file responses, 236

426 | Index

headers for, 288
JSON responses, 236
lifecycle of, 225-227
redirect responses, 236-238
setting cookies on, 328
testing, 245-246
view responses, 235
response() helper, 52, 233, 398
REST (Representational State Transfer),
283-284, 411
restore() method, Eloquent, 167
reverse() method, collection, 404
right angle bracket, triple (>>>), Tinker
prompt, 128
rollBack() method, DB, 157
Rollup, 81
route caching, 45
route commands, Artisan, 116
route groups, 30-34
(see also controllers)
defining, 30
middleware applied to, 31-32
name prefixes using, 34
namespace prefixes using, 33
path prefixes using, 32
subdomain routing using, 33
route middleware, 208, 214, 242
route model binding, 43-44
route() helper, 28, 29-30, 394
route() method, 49
route:cache command, Artisan, 45
route:list command, Artisan, 42
routes, 411
defining, 23-29
fluent definitions of, 28
handling, 26
listing, 42
naming, 28-29
parameters for, 26-28, 43-44, 100
testing, 53
verbs for, 25
routes folder, 19
routes() method, Auth, 205
routes.php file, 23, 243
RouteServiceProvider, 227, 243
rules (abilities) for authorization, 213
rules() method, form request, 107

S
S3 cloud storage, 316
s3 disk, 316
Saa$S (Software as a Service), 411
save() method, Eloquent, 163
schedule commands, Artisan, 117
schedule:run command, Artisan, 383
scheduler, 382-386
Artisan commands as tasks, 383
avoiding tasks overlapping, 385
closures as tasks, 383, 386
shell commands as tasks, 383
task output, handling, 385-386
task types, 383
time frames for, setting, 383-384
scopes (filters), Eloquent, 168-171, 411
scopes (privileges), OAuth, 309-311
Scout package, 329-331, 411
drivers supported, 329
installing and configuring, 329
manually triggering, 330
marking model for indexing, 329
not using for some operations, 330
queuing actions of, 330
searching index, 329
scout.php file, 329, 330
scout:import command, Artisan, 331
ScoutServiceProvider, 329
script injection, 110
search() method, 329
Searchable trait, 329
searchable() method, 330
searchableAs() method, 329
secret() method, 124
@section directive, Blade, 60-61
sections, Blade, 60
secure() method, redirects, 50
secure() method, Request, 232
security
authentication (see authentication)
authorization (see authorization)
CSRE (cross-site request forgery), 46-48,
379, 408
encryption (see encryption)
mass assignment, 109, 164-165, 410
script injection, 110
see() method, TestCase, 270
seeCookie() method, TestCase, 270, 335
seed() method, TestCase, 278

Index |

427

seeders, 141-146

creating, 142

model factories for, 143-146

testing, 278
seeHeader() method, TestCase, 270
seeInDatabase() method, TestCase, 271
seelnField() method, TestCase, 270
seelsChecked() method, TestCase, 270
seelsSelected() method, TestCase, 270
seeJson() method, TestCase, 271
seeJsonEquals() method, TestCase, 271
seeLink() method, TestCase, 270
seePagels() method, TestCase, 270
seePlainCookie() method, TestCase, 335
segment() method, Request, 100
segments() method, Request, 100
select() method, DB, 147, 149
select() method, TestCase, 275
selectRaw() method, DB, 154
send() method, Mail, 338
send() method, Notification, 349
sendOutputTo() method, tasks, 385
serialization, 177-179, 411
SerializesModels trait, 358
serve command, Artisan, 114
server() method, Request, 232
server.php file, 20
service container (see container)
service providers, 227-228, 258, 411

(see also specific service providers)
services, injecting into a view, 67-68
services.php file, 337
session commands, Artisan, 117
Session facade, 320
session() helper, 321-322
session() method, Request, 320
session() method, TestCase, 277
session.php file, 320
sessions, 320-323

accessing, 320-322

configuring, 320

drivers supported, 320

flash session storage, 323

testing, 277, 333-334
setter injection, 247
setUp() method, 259
share() method, 65
shell commands, scheduling as tasks, 383
ShouldBroadcast interface, 370

shouldHaveReceived() method, Mockery, 281
shouldIgnoreMissing() method, Mockery, 279
shouldReceive() method, Mockery, 280, 281
@show directive, Blade, 60-61, 62
show() method, resource controllers, 42
showLinkRequestForm() method, 205
showLoginForm() method, 203
showRegistrationForm() method, 202
showResetForm() method, 204
shuffle() method, collection, 404
singleton() method, 253
singletons, binding to, 253
size() method, Storage, 317
skip() method, DB, 153
Slack notifications, 352
slash (/), escaping in Artisan commands, 285
smallInteger() method, Blueprint, 136
SMS notifications, 352
soft deletes, 166-168, 411
softDeletes() method, Blueprint, 137, 166
Software as a Service (SaaS), 411
sort() method, collection, 404
sortBy() method, collection, 404
sortByDesc() method, collection, 404
sorting API results, 291-292
source maps, Elixir, 79
Spark, 411
SplFilelnfo class, 319
SQL queries, raw, 147-149
(see also query builder)
SQLite
dependencies for, 138
modifying multiple columns, 139
starts_with() helper, 88, 391
stateless APIs, 283
statement() method, DB, 147
static calls, 25
stdClass object
returned by DB facade, 133, 147
returned by loops, 59
storage, 315-316
(see also databases)
additional providers, adding, 318
cache, 323-325
configuring, 315-316
cookies, 325-329
drivers supported, 315
File facade for, 318
file uploads, handling, 318-320

428 | Index

flash session storage, 323
session storage, 320-323
Storage facade methods for, 316-318
testing, 331-333
types of, 315-316
storage commands, Artisan, 117
Storage facade, 316-318
storage folder, 19
storage:link command, Artisan, 316
storage_path() helper, 316, 393
Store class, 321
store() method, resource controllers, 42

store() method, UploadedFile, 102-103, 320
storeAs() method, UploadedFile, 102-103, 320

string() method, Blueprint, 136
strings

helpers for, 391-392

localization, 89-91

pluralization, 89, 91

string helpers, 88
str_contains() helper, 88, 391
str_is() helper, 88, 392
str_limit() helper, 391
str_plural() helper, 89
str_random() helper, 392
str_slug() helper, 89, 392
subdomain routing, 33
subject() method, mailable, 341
submitForm() method, TestCase, 276
subscribe() method, events, 369
sum() method, collection, 404
sum() method, DB, 154
sum() method, Eloquent, 162
SwiftMailer, 337
Symfony, 4, 411

Console component, 113

HttpFoundation classes, 228

Translation component, 91
sync() method, Eloquent, 185
synchronizer tokens, Passport, 306-307
system requirements, xvi, 11-12

T

table() method, 125

take() method, collection, 403
take() method, DB, 153

take() method, Eloquent, 160
Task::all() query, 35, 38

tasks, scheduling (see scheduler)

templates (see Blade; views)

@test docblock, 264

TestCase class, 267

TestCase.php file, 262

testing, 261-264
APIs, 312
application tests, 262, 266-277, 407
Artisan commands, 128, 277
assertions in, 407

authentication and authorization, 221-223,

277

cache, 334

cookies, 334-335

database operations, 193-195

dependency injection in, 258

environment for, 265

error bags, 92

failed test results, 263

integration tests, 262, 410

inversion of control in, 258

JSON, 264

localization, 92

mail, 352

message bags, 92

Mockery library for, 278-281

naming tests, 264

notifications, 353

requests and responses, 245-246

routes, 53

running tests, 21, 82, 92

seeders, 278

session, 277

sessions, 333-334

storage, 331-333

traits for, 266

unit tests, 261

unit tests for, 412

user input, 110

views, 71-72

with Behat, 261

with Faker, 261

with Mockery, 261

with PHPUnit, 261

writing tests, 21
tests folder, 19, 262, 264
text() method, Blueprint, 136
text() method, mailable, 341
thenPing() method, tasks, 386
time() method, Blueprint, 137

Index

429

times and dates (see Carbon package; schedu-
ler; timestamps)
timestamp() method, Blueprint, 137
timestamps, 137, 160, 174, 190-192
timestamps() method, Blueprint, 137
Tinker, 114, 128, 128, 412
tinker command, Artisan, 114
tinyInteger() method, Blueprint, 136
TL;DR (too long; didn’t read), xvi, 412
to() method, 49
toArray() method, collection, 400
toArray() method, Eloquent, 177
toBroadcast() method, notification, 352
toDatabase() method, notification, 351
toJson() method, Eloquent, 177
Tokenizer PHP extension, 11
tokens, CSRF, 46-48
toMail() method, notification, 350-350
toNexmo() method, notification, 352
too long; didn’t read (TL;DR), xvi, 412
toOthers() method, events, 375, 382
top-level domains, for local development site,
15
toSearchableArray() method, 329
toSlack() method, notification, 352
transaction() method, DB, 157
transactions, 156
translation (see localization)
Translation component, Symfony, 91
trashed() method, Eloquent, 167
truncate() method, DB, 156
Twig Bridge package, 56
(see also Blade)
type() method, TestCase, 275
typehint, 40, 412
typehinting, 251, 253

]

uncheck() method, TestCase, 275
union() method, DB, 155
unionAll() method, DB, 155
unique() method, Blueprint, 138
unit tests, 261, 412

universal to, for mail, 345
@unless directive, Blade, 57
unsearchable() method, 331
unsigned() method, Blueprint, 138
up() method, migrations, 134, 135
update() method, DB, 149, 156

update() method, Eloquent, 163, 164
update() method, resource controllers, 42
updateExistingPivot() method, Eloquent, 185
uploaded files, 101-103, 318-320, 331-333
UploadedFile class, 102, 232, 331
url() helper, 28, 29, 395
url() method, Request, 232
URLs

helpers for, 394-395

user input from route parameters, 100

user input from URL segments, 100
user authentication (see authentication)
user authorization (see authorization)
user input

Artisan commands, 123-125

Eloquent model, 109

form requests, 107-109

getting and handling with controllers, 39-40

Request object, 95-99, 230-231

route parameters, 100

testing, 110

uploaded files, 101-103

URLs, 100

validating, 103-106
User model, 198-201
user() method, 201, 209
username() method, 204
uuid() method, Blueprint, 137

v

Vagrant, 13, 412
commands for, 16
mapping Homestead folders to, 15
migrations with, 141

Valet package, 12-13, 412

validate() method, controller, 52, 103-105

validateLogin() method, 203

validation of user input, 103-106, 412
error messages from, displaying, 106
manual validation, 106
validate() method, controller, 103-105
validation rules, 105

Validator class, 87, 106

validator() method, 202

vendor commands, Artisan, 117

vendor folder, 19

vendor:publish command, Artisan, 308, 329

versioning, in Elixir, 81-82

versions of Laravel, xvi

430 | Index

versions of Laravel, prior to 5.2
ACL (access control list), 212
authentication guards, 210
fluent route definitions, 29
middleware groups, 243
render() method, pagination, 85
testing traits, 267

versions of Laravel, prior to 5.3
API token authentication, 311-312
assertViewHas() method, 72
authentication controllers, 197
classic mail, 338
compiling JavaScript, 81
DB facade results, 148
Eloquent results, 161
$expression parameter, 70
generating resource controllers, 38
$loop variable, 59
PHP and extensions, 11
policy methods, 219
routes file, 23
withCookie() method, Response, 328

via() method, notification, 347, 348

viaRemember() method, 208

view commands, Artisan, 117

view composers, 35, 64-67, 412

view responses, 235

view() helper, 64-67, 235, 398

view() method, Response, 235

views, 34-36, 407, 412
binding data to, 64-67
loading, 35
passing variables to, 35, 64
testing, 71-72
types of, 34

VirtualBox, 13

$visible property, 294

visit() method, TestCase, 268

VMWare, 13

Vue components, 308-309

w
wantsJson() method, Request, 232
web guard, 209
web middleware group, 243
web routes, 23
(see also routes)

web.php file, 23
Webpack, 81
website resources (see online resources)
WebSocket authentication (see Echo)
WebSockets, 369-382

authorization for channels, 376-378

broadcasting events, 370-373

channels for, 371, 376

configuring, 370

drivers supported, 370

Echo for, 373

event structure for, 371

excluding user from events, 375-375

Pub/Sub pattern used by, 369

queue worker for, 370

receiving event messages, 373-374

service provider configuration, 376
when() method, 254
where() method, collection, 401
where() method, DB, 150-151
where() method, Eloquent, 160, 293
whereBetween() method, DB, 151
whereExists() method, DB, 152
whereln() method, DB, 151
whereNull() method, DB, 152
whereRaw() method, DB, 152
with() method, 50-52, 65
withCookie() method, Response, 328
withErrors() method, 88
withInput() method, 51
withoutEvents() method, TestCase, 276
withoutGlobalScope() method, 170
withoutGlobalScopes() method, 170
WithoutMiddleware trait, 266
withoutOverlapping() method, tasks, 385
withoutSyncingToSearch() method, 330
withPivot() method, Eloquent, 186
withSwiftMessage() method, mailable, 342
withTrashed() method, Eloquent, 167
workers for queues, 360, 370

X

X- preceding header names, 288

Y

@yield directive, Blade, 60

Index |

431

About the Author

Matt Stauffer is a developer and a teacher. He is a partner and technical director at
Tighten Co., blogs at mattstauffer.co, and hosts The Five-Minute Geek Show and the
Laravel Podcast.

Colophon

The animal on the cover of Laravel: Up and Running is a gemsbok (oryx gazella). This
large antelope is native to the deserts of South Africa, Botswana, Zimbabwe, and
Namibia, where it is featured on the country’s coat of arms.

Gemsbok measure about 5 feet 7 inches tall at the shoulder and can weigh from 250
to 390 pounds. They are typically pale gray or brown, with black and white facial
markings and long black tails. A black stripe extends from the chin to the lower edge
of the neck. The gemsbok’s impressive straight horns, used in defensive maneuvers,
average 33 inches in length and are regarded as charms in many cultures. In medieval
England, they were often marketed as unicorn horns.

Although these horns make the gemsbok a highly-sought trophy animal, the popula-
tion remains stable throughout Southern Africa. In 1969, gemsbok were introduced
to southern New Mexico, where their current population is around 3,000.

Gemsbok are well-suited to such desert environments, with the ability to survive
without drinking water for most of the year. To achieve this, they do not pant or
sweat, allowing their body temperature to rise several degrees above normal on hot
days. Their lifespan is approximately 18 years in the wild.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Riverside Natural History. The cover fonts are URW Type-
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://mattstauffer.co
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	What This Book Is About
	Who This Book Is For
	How This Book Is Structured
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Why Laravel?
	Why Use a Framework?
	“I’ll Just Build It Myself”
	Consistency and Flexibility

	A Short History of Web and PHP Frameworks
	Ruby on Rails
	The Influx of PHP Frameworks
	The Good and the Bad of CodeIgniter
	Laravel 1, 2, and 3
	Laravel 4
	Laravel 5

	What’s So Special About Laravel?
	The Philosophy of Laravel
	How Laravel Achieves Developer Happiness
	The Laravel Community

	How It Works
	Why Laravel?

	Chapter 2. Setting Up a Laravel Development Environment
	System Requirements
	Composer
	Local Development Environments
	Laravel Valet
	Laravel Homestead

	Creating a New Laravel Project
	Installing Laravel with the Laravel Installer Tool
	Installing Laravel with Composer’s create-project Feature

	Laravel’s Directory Structure
	The Folders
	The Loose Files

	Configuration
	Up and Running
	Testing
	TL;DR

	Chapter 3. Routing and Controllers
	Route Definitions
	Route Verbs
	Route Handling
	Route Parameters
	Route Names

	Route Groups
	Middleware
	Path Prefixes
	Subdomain Routing
	Namespace Prefixes
	Name Prefixes

	Views
	Using View Composers to Share Variables with Every View

	Controllers
	Getting User Input
	Injecting Dependencies into Controllers
	Resource Controllers

	Route Model Binding
	Implicit Route Model Binding
	Custom Route Model Binding

	Route Caching
	Form Method Spoofing
	An Introduction to HTTP Verbs
	HTTP Verbs in Laravel
	HTTP Method Spoofing in HTML Forms

	CSRF Protection
	Redirects
	redirect()->to()
	redirect()->route()
	redirect()->back()
	Other Redirect Methods
	redirect()->with()

	Aborting the Request
	Custom Responses
	response()->make()
	response()->json() and ->jsonp()
	response()->download() and ->file()

	Testing
	TL;DR

	Chapter 4. Blade Templating
	Echoing Data
	Control Structures
	Conditionals
	Loops
	or

	Template Inheritance
	Defining Sections with @section/@show and @yield
	@parent
	@include
	@each

	View Composers and Service Injection
	Binding Data to Views Using View Composers
	Blade Service Injection

	Custom Blade Directives
	Parameters in Custom Blade Directives
	Example: Using Custom Blade Directives for a Multitenant App

	Testing
	TL;DR

	Chapter 5. Frontend Components
	Elixir
	Elixir Folder Structure
	Running Elixir
	What Does Elixir Provide?

	Pagination
	Paginating Database Results
	Manually Creating Paginators

	Message Bags
	Named Error Bags

	String Helpers, Pluralization, and Localization
	The String Helpers and Pluralization
	Localization

	Testing
	Testing with Elixir
	Testing Message and Error Bags
	Translation and Localization

	TL;DR

	Chapter 6. Collecting and Handling User Data
	Injecting a Request Object
	$request->all()
	$request->except() and $request->only()
	$request->has() and $request->exists()
	$request->input()
	Array Input
	JSON Input (and $request->json())

	Route Data
	From Request
	From Route Parameters

	Uploaded Files
	Validation
	validate() in the Controller Using ValidatesRequests
	Manual Validation
	Displaying Validation Error Messages

	Form Requests
	Creating a Form Request
	Using a Form Request

	Eloquent Model Mass Assignment
	{{ Versus {!!
	Testing
	TL;DR

	Chapter 7. Artisan and Tinker
	An Introduction to Artisan
	Basic Artisan Commands
	Options
	The Grouped Commands

	Writing Custom Artisan Commands
	Registering Commands
	A Sample Command
	Arguments and Options
	Using Input
	Prompts
	Output

	Calling Artisan Commands in Normal Code
	Tinker
	Testing
	TL;DR

	Chapter 8. Database and Eloquent
	Configuration
	Database Connections
	Other Database Configuration Options

	Migrations
	Defining Migrations
	Running Migrations

	Seeding
	Creating a Seeder
	Model Factories

	Query Builder
	Basic Usage of the DB Facade
	Raw SQL
	Chaining with the Query Builder
	Transactions

	Introduction to Eloquent
	Creating and Defining Eloquent Models
	Retrieving Data with Eloquent
	Inserts and Updates with Eloquent
	Deleting with Eloquent
	Scopes
	Customizing Field Interactions with Accessors, Mutators, and Attribute Casting
	Eloquent Collections
	Eloquent Serialization
	Eloquent Relationships
	Child Records Updating Parent Record Timestamps

	Eloquent Events
	Testing
	TL;DR

	Chapter 9. User Authentication and Authorization
	The User Model and Migration
	Using the auth() Global Helper and the Auth Facade
	The Auth Controllers
	RegisterController
	LoginController
	ResetPasswordController
	ForgotPasswordController

	Auth::routes()
	The Auth Scaffold
	“Remember Me”
	Manually Authenticating Users
	Auth Middleware
	Guards
	Changing the Default Guard
	Using Other Guards Without Changing the Default
	Adding a New Guard
	Creating a Custom User Provider
	Custom User Providers for Nonrelational Databases

	Auth Events
	Authorization (ACL) and Roles
	Defining Authorization Rules
	The Gate Facade (and Injecting Gate)
	The Authorize Middleware
	Controller Authorization
	Checking on the User Instance
	Blade Checks
	Intercepting Checks
	Policies

	Testing
	TL;DR

	Chapter 10. Requests and Responses
	Laravel’s Request Lifecycle
	Bootstrapping the Application
	Service Providers

	The Request Object
	Getting a Request Object in Laravel
	Getting Basic Information About a Request
	Persistence

	The Response Object
	Using and Creating Response Objects in Controllers
	Specialized Response Types

	Laravel and Middleware
	An Introduction to Middleware
	Creating Custom Middleware
	Binding Middleware
	Passing Parameters to Middleware

	Testing
	TL;DR

	Chapter 11. The Container
	A Quick Introduction to Dependency Injection
	Dependency Injection and Laravel
	The app() Global Helper
	How the Container Is Wired
	Binding Classes to the Container
	Binding to a Closure
	Binding to Singletons, Aliases, and Instances
	Binding a Concrete Instance to an Interface
	Contextual Binding

	Constructor Injection
	Method Injection
	Facades and the Container
	How Facades Work

	Service Providers
	Testing
	TL;DR

	Chapter 12. Testing
	Testing Basics
	Naming Tests
	The Testing Environment
	The Testing Traits
	WithoutMiddleware
	DatabaseMigrations
	DatabaseTransactions

	Application Testing
	TestCase
	“Visiting” Routes
	Custom Application Testing Assertions
	JSON and Non-visit() Application Testing Assertions
	Clicking and Forms
	Jobs and Events
	Authentication and Sessions

	Artisan and Seed
	Mocking
	Mockery
	Mocking Facades

	TL;DR

	Chapter 13. Writing APIs
	The Basics of REST-Like JSON APIs
	Controller Organization and JSON Returns
	Reading and Sending Headers
	Sending Response Headers in Laravel
	Reading Request Headers in Laravel

	Eloquent Pagination
	Sorting and Filtering
	Sorting Your API Results
	Filtering Your API Results

	Transforming Results
	Writing Your Own Transformer

	Nesting and Relationships
	API Authentication with Laravel Passport
	A Brief Introduction to OAuth 2.0
	Installing Passport
	Passport’s API
	Passport’s Available Grant Types
	Managing Clients and Tokens with the Passport API and the Vue Components
	Passport Scopes

	Laravel 5.2+ API Token Authentication
	Testing
	TL;DR

	Chapter 14. Storage and Retrieval
	Local and Cloud File Managers
	Configuring File Access
	Using the Storage Facade
	Adding Additional Flysystem Providers

	Basic File Uploads and Manipulation
	Sessions
	Accessing the Session
	The Methods Available on Session Instances
	Flash Session Storage

	Cache
	Accessing the Cache
	The Methods Available on Cache Instances

	Cookies
	Cookies in Laravel
	Accessing the Cookie Tools

	Full-Text Search with Laravel Scout
	Installing Scout
	Marking Your Model for Indexing
	Searching Your Index
	Queues and Scout
	Perform Operations Without Indexing
	Manually Trigger Indexing via Code
	Manually Trigger Indexing via the CLI

	Testing
	File Storage
	Session
	Cache
	Cookies

	TL;DR

	Chapter 15. Mail and Notifications
	Mail
	“Classic” Mail
	Basic “Mailable” Mail Usage
	Mail Templates
	Methods Available in build()
	Attachments and Inline Images
	Queues
	Local Development

	Notifications
	Defining the via() Method for Your Notifiables
	Sending Notifications
	Queueing Notifications
	Out-of-the-Box Notification Types

	Testing
	Mail
	Notifications

	TL;DR

	Chapter 16. Queues, Jobs, Events, Broadcasting, and the Scheduler
	Queues
	Why Queues?
	Basic Queue Configuration
	Queued Jobs
	Running a Queue Worker
	Handling Errors
	Controlling the Queue
	Queues Supporting Other Functions

	Events
	Firing an Event
	Listening for an Event

	Broadcasting Events over WebSockets, and Laravel Echo
	Configuration and Setup
	Broadcasting an Event
	Receiving the Message
	Advanced Broadcasting Tools
	Laravel Echo (the JavaScript Side)

	Scheduler
	Available Task Types
	Available Time Frames
	Blocking and Overlap
	Handling Task Output
	Task Hooks

	Testing
	TL;DR

	Chapter 17. Helpers and Collections
	Helpers
	Arrays
	Strings
	Application Paths
	URLs
	Misc

	Collections
	The Basics of Collections
	A Few Methods

	TL;DR

	Glossary
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

